Abstract:Narratives are widely recognized as a powerful tool for structuring information and facilitating comprehension of complex ideas in various domains such as science communication. This paper investigates whether incorporating narrative elements can assist Large Language Models (LLMs) in solving complex problems more effectively. We propose a novel approach, Story of Thought (SoT), integrating narrative structures into prompting techniques for problem-solving. This approach involves constructing narratives around problem statements and creating a framework to identify and organize relevant information. Our experiments show that using various LLMs with SoT consistently surpasses using them with other techniques on physics, chemistry, math, and biology questions in both the GPQA and JEEBench datasets. The narrative-based information curation process in SoT enhances problem comprehension by contextualizing critical in-domain information and highlighting causal relationships within the problem space.
Abstract:Voice-based systems like Amazon Alexa, Google Assistant, and Apple Siri, along with the growing popularity of OpenAI's ChatGPT and Microsoft's Copilot, serve diverse populations, including visually impaired and low-literacy communities. This reflects a shift in user expectations from traditional search to more interactive question-answering models. However, presenting information effectively in voice-only channels remains challenging due to their linear nature. This limitation can impact the presentation of complex queries involving controversial topics with multiple perspectives. Failing to present diverse viewpoints may perpetuate or introduce biases and affect user attitudes. Balancing information load and addressing biases is crucial in designing a fair and effective voice-based system. To address this, we (i) review how biases and user attitude changes have been studied in screen-based web search, (ii) address challenges in studying these changes in voice-based settings like SCS, (iii) outline research questions, and (iv) propose an experimental setup with variables, data, and instruments to explore biases in a voice-based setting like Spoken Conversational Search.
Abstract:Instruments such as eye-tracking devices have contributed to understanding how users interact with screen-based search engines. However, user-system interactions in audio-only channels -- as is the case for Spoken Conversational Search (SCS) -- are harder to characterize, given the lack of instruments to effectively and precisely capture interactions. Furthermore, in this era of information overload, cognitive bias can significantly impact how we seek and consume information -- especially in the context of controversial topics or multiple viewpoints. This paper draws upon insights from multiple disciplines (including information seeking, psychology, cognitive science, and wearable sensors) to provoke novel conversations in the community. To this end, we discuss future opportunities and propose a framework including multimodal instruments and methods for experimental designs and settings. We demonstrate preliminary results as an example. We also outline the challenges and offer suggestions for adopting this multimodal approach, including ethical considerations, to assist future researchers and practitioners in exploring cognitive biases in SCS.
Abstract:The effectiveness of clarification question models in engaging users within search systems is currently constrained, casting doubt on their overall usefulness. To improve the performance of these models, it is crucial to employ assessment approaches that encompass both real-time feedback from users (online evaluation) and the characteristics of clarification questions evaluated through human assessment (offline evaluation). However, the relationship between online and offline evaluations has been debated in information retrieval. This study aims to investigate how this discordance holds in search clarification. We use user engagement as ground truth and employ several offline labels to investigate to what extent the offline ranked lists of clarification resemble the ideal ranked lists based on online user engagement.
Abstract:Creating and deploying customized applications is crucial for operational success and enriching user experiences in the rapidly evolving modern business world. A prominent facet of modern user experiences is the integration of chatbots or voice assistants. The rapid evolution of Large Language Models (LLMs) has provided a powerful tool to build conversational applications. We present Walert, a customized LLM-based conversational agent able to answer frequently asked questions about computer science degrees and programs at RMIT University. Our demo aims to showcase how conversational information-seeking researchers can effectively communicate the benefits of using best practices to stakeholders interested in developing and deploying LLM-based chatbots. These practices are well-known in our community but often overlooked by practitioners who may not have access to this knowledge. The methodology and resources used in this demo serve as a bridge to facilitate knowledge transfer from experts, address industry professionals' practical needs, and foster a collaborative environment. The data and code of the demo are available at https://github.com/rmit-ir/walert.
Abstract:Asking clarification questions is an active area of research; however, resources for training and evaluating search clarification methods are not sufficient. To address this issue, we describe MIMICS-Duo, a new freely available dataset of 306 search queries with multiple clarifications (a total of 1,034 query-clarification pairs). MIMICS-Duo contains fine-grained annotations on clarification questions and their candidate answers and enhances the existing MIMICS datasets by enabling multi-dimensional evaluation of search clarification methods, including online and offline evaluation. We conduct extensive analysis to demonstrate the relationship between offline and online search clarification datasets and outline several research directions enabled by MIMICS-Duo. We believe that this resource will help researchers better understand clarification in search.
Abstract:Conversational information seeking (CIS) is concerned with a sequence of interactions between one or more users and an information system. Interactions in CIS are primarily based on natural language dialogue, while they may include other types of interactions, such as click, touch, and body gestures. This monograph provides a thorough overview of CIS definitions, applications, interactions, interfaces, design, implementation, and evaluation. This monograph views CIS applications as including conversational search, conversational question answering, and conversational recommendation. Our aim is to provide an overview of past research related to CIS, introduce the current state-of-the-art in CIS, highlight the challenges still being faced in the community. and suggest future directions.
Abstract:Conversational assistants are being progressively adopted by the general population. However, they are not capable of handling complicated information-seeking tasks that involve multiple turns of information exchange. Due to the limited communication bandwidth in conversational search, it is important for conversational assistants to accurately detect and predict user intent in information-seeking conversations. In this paper, we investigate two aspects of user intent prediction in an information-seeking setting. First, we extract features based on the content, structural, and sentiment characteristics of a given utterance, and use classic machine learning methods to perform user intent prediction. We then conduct an in-depth feature importance analysis to identify key features in this prediction task. We find that structural features contribute most to the prediction performance. Given this finding, we construct neural classifiers to incorporate context information and achieve better performance without feature engineering. Our findings can provide insights into the important factors and effective methods of user intent prediction in information-seeking conversations.
Abstract:Understanding and characterizing how people interact in information-seeking conversations is crucial in developing conversational search systems. In this paper, we introduce a new dataset designed for this purpose and use it to analyze information-seeking conversations by user intent distribution, co-occurrence, and flow patterns. The MSDialog dataset is a labeled dialog dataset of question answering (QA) interactions between information seekers and providers from an online forum on Microsoft products. The dataset contains more than 2,000 multi-turn QA dialogs with 10,000 utterances that are annotated with user intent on the utterance level. Annotations were done using crowdsourcing. With MSDialog, we find some highly recurring patterns in user intent during an information-seeking process. They could be useful for designing conversational search systems. We will make our dataset freely available to encourage exploration of information-seeking conversation models.