Abstract:Large Language Models (LLMs) are trained on Web data that might contain spelling errors made by humans. But do they become robust to similar real-world noise? In this paper, we investigate the effect of real-world spelling mistakes on the performance of 9 language models, with parameters ranging from 0.2B to 13B, in 3 different NLP tasks, namely Natural Language Inference (NLI), Name Entity Recognition (NER), and Intent Classification (IC). We perform our experiments on 6 different languages and build a dictionary of real-world noise for them using the Wikipedia edit history. We show that the performance gap of the studied models on the clean and noisy test data averaged across all the datasets and languages ranges from 2.3 to 4.3 absolute percentage points. In addition, mT5 models, in general, show more robustness compared to BLOOM, Falcon, and BERT-like models. In particular, mT5 (13B), was the most robust on average overall, across the 3 tasks, and in 4 of the 6 languages.
Abstract:Large Language Models (LLMs) have shown impressive performance in various NLP tasks. However, there are concerns about their reliability in different domains of linguistic variations. Many works have proposed robustness evaluation measures for local adversarial attacks, but we need globally robust models unbiased to different language styles. We take a broader approach to explore a wider range of variations across sociodemographic dimensions to perform structured reliability tests on the reasoning capacity of language models. We extend the SocialIQA dataset to create diverse paraphrased sets conditioned on sociodemographic styles. The assessment aims to provide a deeper understanding of LLMs in (a) their capability of generating demographic paraphrases with engineered prompts and (b) their reasoning capabilities in real-world, complex language scenarios. We also explore measures such as perplexity, explainability, and ATOMIC performance of paraphrases for fine-grained reliability analysis of LLMs on these sets. We find that demographic-specific paraphrasing significantly impacts the performance of language models, indicating that the subtleties of language variations remain a significant challenge. The code and dataset will be made available for reproducibility and future research.
Abstract:While Large Language Models (LLMs) have shown impressive capabilities in math problem-solving tasks, their robustness to noisy inputs is not well-studied. In this work, we propose ArithmAttack to examine how robust the LLMs are when they encounter noisy prompts that contain extra noise in the form of punctuation marks. While being easy to implement, ArithmAttack does not cause any information loss since words are not added or deleted from the context. We evaluate the robustness of seven LLMs, including LLama3, Mistral, and Mathstral, on noisy GSM8K and MultiArith datasets. Our experiments suggest that all the studied models show vulnerability to such noise, with more noise leading to poorer performances.
Abstract:Correlations between input parameters play a crucial role in many scientific classification tasks, since these are often related to fundamental laws of nature. For example, in high energy physics, one of the common deep learning use-cases is the classification of signal and background processes in particle collisions. In many such cases, the fundamental principles of the correlations between observables are often better understood than the actual distributions of the observables themselves. In this work, we present a new adversarial attack algorithm called Random Distribution Shuffle Attack (RDSA), emphasizing the correlations between observables in the network rather than individual feature characteristics. Correct application of the proposed novel attack can result in a significant improvement in classification performance - particularly in the context of data augmentation - when using the generated adversaries within adversarial training. Given that correlations between input features are also crucial in many other disciplines. We demonstrate the RDSA effectiveness on six classification tasks, including two particle collision challenges (using CERN Open Data), hand-written digit recognition (MNIST784), human activity recognition (HAR), weather forecasting (Rain in Australia), and ICU patient mortality (MIMIC-IV), demonstrating a general use case beyond fundamental physics for this new type of adversarial attack algorithms.
Abstract:The proliferation of ideological movements into extremist factions via social media has become a global concern. While radicalization has been studied extensively within the context of specific ideologies, our ability to accurately characterize extremism in more generalizable terms remains underdeveloped. In this paper, we propose a novel method for extracting and analyzing extremist discourse across a range of online community forums. By focusing on verbal behavioral signatures of extremist traits, we develop a framework for quantifying extremism at both user and community levels. Our research identifies 11 distinct factors, which we term ``The Extremist Eleven,'' as a generalized psychosocial model of extremism. Applying our method to various online communities, we demonstrate an ability to characterize ideologically diverse communities across the 11 extremist traits. We demonstrate the power of this method by analyzing user histories from members of the incel community. We find that our framework accurately predicts which users join the incel community up to 10 months before their actual entry with an AUC of $>0.6$, steadily increasing to AUC ~0.9 three to four months before the event. Further, we find that upon entry into an extremist forum, the users tend to maintain their level of extremism within the community, while still remaining distinguishable from the general online discourse. Our findings contribute to the study of extremism by introducing a more holistic, cross-ideological approach that transcends traditional, trait-specific models.
Abstract:Use of large language models such as ChatGPT (GPT-4) for mental health support has grown rapidly, emerging as a promising route to assess and help people with mood disorders, like depression. However, we have a limited understanding of GPT-4's schema of mental disorders, that is, how it internally associates and interprets symptoms. In this work, we leveraged contemporary measurement theory to decode how GPT-4 interrelates depressive symptoms to inform both clinical utility and theoretical understanding. We found GPT-4's assessment of depression: (a) had high overall convergent validity (r = .71 with self-report on 955 samples, and r = .81 with experts judgments on 209 samples); (b) had moderately high internal consistency (symptom inter-correlates r = .23 to .78 ) that largely aligned with literature and self-report; except that GPT-4 (c) underemphasized suicidality's -- and overemphasized psychomotor's -- relationship with other symptoms, and (d) had symptom inference patterns that suggest nuanced hypotheses (e.g. sleep and fatigue are influenced by most other symptoms while feelings of worthlessness/guilt is mostly influenced by depressed mood).
Abstract:Narratives are widely recognized as a powerful tool for structuring information and facilitating comprehension of complex ideas in various domains such as science communication. This paper investigates whether incorporating narrative elements can assist Large Language Models (LLMs) in solving complex problems more effectively. We propose a novel approach, Story of Thought (SoT), integrating narrative structures into prompting techniques for problem-solving. This approach involves constructing narratives around problem statements and creating a framework to identify and organize relevant information. Our experiments show that using various LLMs with SoT consistently surpasses using them with other techniques on physics, chemistry, math, and biology questions in both the GPQA and JEEBench datasets. The narrative-based information curation process in SoT enhances problem comprehension by contextualizing critical in-domain information and highlighting causal relationships within the problem space.
Abstract:With the success of ChatGPT and other similarly sized SotA LLMs, claims of emergent human like social reasoning capabilities, especially Theory of Mind (ToM), in these models have appeared in the scientific literature. On the one hand those ToM-capabilities have been successfully tested using tasks styled similar to those used in psychology (Kosinski, 2023). On the other hand, follow up studies showed that those capabilities vanished when the tasks were slightly altered (Ullman, 2023). In this work we introduce a novel dataset of 68 tasks for probing ToM in LLMs, including potentially challenging variations which are assigned to 10 complexity classes. This way it is providing novel insights into the challenges LLMs face with those task variations. We evaluate the ToM performance of four SotA open source LLMs on our dataset and the dataset introduced by (Kosinski, 2023). The overall low goal accuracy across all evaluated models indicates only a limited degree of ToM capabilities. The LLMs' performance on simple complexity class tasks from both datasets are similar. Whereas we find a consistent tendency in all tested LLMs to perform poorly on tasks that require the realization that an agent has knowledge of automatic state changes in its environment, even when those are spelled out to the model. For task complications that change the relationship between objects by replacing prepositions, we notice a performance drop in all models, with the strongest impact on the mixture-of-experts model. With our dataset of tasks grouped by complexity we offer directions for further research on how to stabilize and advance ToM capabilities in LLM.
Abstract:Recent advances in large language model (LLM) pruning have shown state-of-the-art compression results in post-training and retraining-free settings while maintaining high predictive performance. However, such research mainly considers calibrating pruning using English text, despite the multilingual nature of modern LLMs and their frequent uses in non-English languages. In this paper, we set out to explore effective strategies for calibrating the pruning of multilingual language models. We present the first comprehensive empirical study, comparing different calibration languages for pruning multilingual models across diverse tasks, models, and state-of-the-art pruning techniques. Our results present practical suggestions, for example, calibrating in the target language can efficiently yield lower perplexity, but does not necessarily benefit downstream tasks. Our further analysis experiments unveil that calibration in the target language mainly contributes to preserving language-specific features related to fluency and coherence, but might not contribute to capturing language-agnostic features such as language understanding and reasoning. Last, we provide practical recommendations for future practitioners.
Abstract:While preliminary findings indicate that multilingual LLMs exhibit reduced bias compared to monolingual ones, a comprehensive understanding of the effect of multilingual training on bias mitigation, is lacking. This study addresses this gap by systematically training six LLMs of identical size (2.6B parameters) and architecture: five monolingual models (English, German, French, Italian, and Spanish) and one multilingual model trained on an equal distribution of data across these languages, all using publicly available data. To ensure robust evaluation, standard bias benchmarks were automatically translated into the five target languages and verified for both translation quality and bias preservation by human annotators. Our results consistently demonstrate that multilingual training effectively mitigates bias. Moreover, we observe that multilingual models achieve not only lower bias but also superior prediction accuracy when compared to monolingual models with the same amount of training data, model architecture, and size.