Abstract:Image enhancement algorithms are very useful for real world computer vision tasks where image resolution is often physically limited by the sensor size. While state-of-the-art deep neural networks show impressive results for image enhancement, they often struggle to enhance real-world images. In this work, we tackle a real-world setting: inpainting of images from Dunhuang caves. The Dunhuang dataset consists of murals, half of which suffer from corrosion and aging. These murals feature a range of rich content, such as Buddha statues, bodhisattvas, sponsors, architecture, dance, music, and decorative patterns designed by different artists spanning ten centuries, which makes manual restoration challenging. We modify two different existing methods (CAR, HINet) that are based upon state-of-the-art (SOTA) super resolution and deblurring networks. We show that those can successfully inpaint and enhance these deteriorated cave paintings. We further show that a novel combination of CAR and HINet, resulting in our proposed inpainting network (ARIN), is very robust to external noise, especially Gaussian noise. To this end, we present a quantitative and qualitative comparison of our proposed approach with existing SOTA networks and winners of the Dunhuang challenge. One of the proposed methods HINet) represents the new state of the art and outperforms the 1st place of the Dunhuang Challenge, while our combination ARIN, which is robust to noise, is comparable to the 1st place. We also present and discuss qualitative results showing the impact of our method for inpainting on Dunhuang cave images.
Abstract:{In this paper, we address the challenging problem of detecting bearing faults from vibration signals. For this, several time- and frequency-domain features have been proposed already in the past. However, these features are usually evaluated on data originating from relatively simple scenarios and a significant performance loss can be observed if more realistic scenarios are considered. To overcome this, we introduce Mel-Frequency Cepstral Coefficients (MFCCs) and features extracted from the Amplitude Modulation Spectrogram (AMS) as features for the detection of bearing faults. Both AMS and MFCCs were originally introduced in the context of audio signal processing but it is demonstrated that a significantly improved classification performance can be obtained by using these features. Furthermore, to tackle the characteristic data imbalance problem in the context of bearing fault detection, i.e., typically much more data from healthy bearings than from damaged bearings is available, we propose to train a One-class \ac{SVM} with data from healthy bearings only. Bearing faults are then classified by the detection of outliers. Our approach is evaluated with data measured in a highly challenging scenario comprising a state-of-the-art commuter railway engine which is supplied by an industrial power converter and coupled to a load machine.
Abstract:Deep learning is a standard tool in the field of high-energy physics, facilitating considerable sensitivity enhancements for numerous analysis strategies. In particular, in identification of physics objects, such as jet flavor tagging, complex neural network architectures play a major role. However, these methods are reliant on accurate simulations. Mismodeling can lead to non-negligible differences in performance in data that need to be measured and calibrated against. We investigate the classifier response to input data with injected mismodelings and probe the vulnerability of flavor tagging algorithms via application of adversarial attacks. Subsequently, we present an adversarial training strategy that mitigates the impact of such simulated attacks and improves the classifier robustness. We examine the relationship between performance and vulnerability and show that this method constitutes a promising approach to reduce the vulnerability to poor modeling.