IMP Lab, Department of Engineering and Architecture, University of Parma, Parma, Italy
Abstract:While preliminary findings indicate that multilingual LLMs exhibit reduced bias compared to monolingual ones, a comprehensive understanding of the effect of multilingual training on bias mitigation, is lacking. This study addresses this gap by systematically training six LLMs of identical size (2.6B parameters) and architecture: five monolingual models (English, German, French, Italian, and Spanish) and one multilingual model trained on an equal distribution of data across these languages, all using publicly available data. To ensure robust evaluation, standard bias benchmarks were automatically translated into the five target languages and verified for both translation quality and bias preservation by human annotators. Our results consistently demonstrate that multilingual training effectively mitigates bias. Moreover, we observe that multilingual models achieve not only lower bias but also superior prediction accuracy when compared to monolingual models with the same amount of training data, model architecture, and size.
Abstract:Current state-of-the-art two-stage models on instance segmentation task suffer from several types of imbalances. In this paper, we address the Intersection over the Union (IoU) distribution imbalance of positive input Regions of Interest (RoIs) during the training of the second stage. Our Self-Balanced R-CNN (SBR-CNN), an evolved version of the Hybrid Task Cascade (HTC) model, brings brand new loop mechanisms of bounding box and mask refinements. With an improved Generic RoI Extraction (GRoIE), we also address the feature-level imbalance at the Feature Pyramid Network (FPN) level, originated by a non-uniform integration between low- and high-level features from the backbone layers. In addition, the redesign of the architecture heads toward a fully convolutional approach with FCC further reduces the number of parameters and obtains more clues to the connection between the task to solve and the layers used. Moreover, our SBR-CNN model shows the same or even better improvements if adopted in conjunction with other state-of-the-art models. In fact, with a lightweight ResNet-50 as backbone, evaluated on COCO minival 2017 dataset, our model reaches 45.3% and 41.5% AP for object detection and instance segmentation, with 12 epochs and without extra tricks. The code is available at https://github.com/IMPLabUniPr/mmdetection/tree/sbr_cnn
Abstract:The class imbalance problem can cause machine learning models to produce an undesirable performance on the minority class as well as the whole dataset. Using data augmentation techniques to increase the number of samples is one way to tackle this problem. We introduce a novel counterfactual data augmentation by verb replacement for the identification of medical claims. In addition, we investigate the impact of this method and compare it with 3 other data augmentation techniques, showing that the proposed method can result in a significant (relative) improvement in the minority class.
Abstract:Nowadays, Semi-Supervised Object Detection (SSOD) is a hot topic, since, while it is rather easy to collect images for creating a new dataset, labeling them is still an expensive and time-consuming task. One of the successful methods to take advantage of raw images on a Semi-Supervised Learning (SSL) setting is the Mean Teacher technique, where the operations of pseudo-labeling by the Teacher and the Knowledge Transfer from the Student to the Teacher take place simultaneously. However, the pseudo-labeling by thresholding is not the best solution since the confidence value is not strictly related to the prediction uncertainty, not permitting to safely filter predictions. In this paper, we introduce an additional classification task for bounding box localization to improve the filtering of the predicted bounding boxes and obtain higher quality on Student training. Furthermore, we empirically prove that bounding box regression on the unsupervised part can equally contribute to the training as much as category classification. Our experiments show that our IL-net (Improving Localization net) increases SSOD performance by 1.14% AP on COCO dataset in limited-annotation regime. The code is available at https://github.com/IMPLabUniPr/unbiased-teacher/tree/ilnet
Abstract:This paper proposes AEDA (An Easier Data Augmentation) technique to help improve the performance on text classification tasks. AEDA includes only random insertion of punctuation marks into the original text. This is an easier technique to implement for data augmentation than EDA method (Wei and Zou, 2019) with which we compare our results. In addition, it keeps the order of the words while changing their positions in the sentence leading to a better generalized performance. Furthermore, the deletion operation in EDA can cause loss of information which, in turn, misleads the network, whereas AEDA preserves all the input information. Following the baseline, we perform experiments on five different datasets for text classification. We show that using the AEDA-augmented data for training, the models show superior performance compared to using the EDA-augmented data in all five datasets. The source code is available for further study and reproduction of the results.
Abstract:With the ever-increasing availability of digital information, toxic content is also on the rise. Therefore, the detection of this type of language is of paramount importance. We tackle this problem utilizing a combination of a state-of-the-art pre-trained language model (CharacterBERT) and a traditional bag-of-words technique. Since the content is full of toxic words that have not been written according to their dictionary spelling, attendance to individual characters is crucial. Therefore, we use CharacterBERT to extract features based on the word characters. It consists of a CharacterCNN module that learns character embeddings from the context. These are, then, fed into the well-known BERT architecture. The bag-of-words method, on the other hand, further improves upon that by making sure that some frequently used toxic words get labeled accordingly. With a 4 percent difference from the first team, our system ranked 36th in the competition. The code is available for further re-search and reproduction of the results.
Abstract:Within the field of instance segmentation, most of the state-of-the-art deep learning networks rely nowadays on cascade architectures, where multiple object detectors are trained sequentially, re-sampling the ground truth at each step. This offers a solution to the problem of exponentially vanishing positive samples. However, it also translates into an increase in network complexity in terms of the number of parameters. To address this issue, we propose Recursively Refined R-CNN ($R^3$-CNN) which avoids duplicates by introducing a loop mechanism instead. At the same time, it achieves a quality boost using a recursive re-sampling technique, where a specific IoU quality is utilized in each recursion to eventually equally cover the positive spectrum. Our experiments highlight the specific encoding of the loop mechanism in the weights, requiring its usage at inference time. The $R^3$-CNN architecture is able to surpass the recently proposed HTC model, while reducing the number of parameters significantly. Experiments on COCO minival 2017 dataset show performance boost independently from the utilized baseline model. The code is available online at https://github.com/IMPLabUniPr/mmdetection/tree/r3_cnn.
Abstract:Aspect-Based Sentiment Analysis (ABSA) studies the consumer opinion on the market products. It involves examining the type of sentiments as well as sentiment targets expressed in product reviews. Analyzing the language used in a review is a difficult task that requires a deep understanding of the language. In recent years, deep language models, such as BERT \cite{devlin2019bert}, have shown great progress in this regard. In this work, we propose two simple modules called Parallel Aggregation and Hierarchical Aggregation to be utilized on top of BERT for two main ABSA tasks namely Aspect Extraction (AE) and Aspect Sentiment Classification (ASC) in order to improve the model's performance. We show that applying the proposed models eliminates the need for further training of the BERT model. The source code is available on the Web for further research and reproduction of the results.
Abstract:Given the wide diffusion of deep neural network architectures for computer vision tasks, several new applications are nowadays more and more feasible. Among them, a particular attention has been recently given to instance segmentation, by exploiting the results achievable by two-stage networks (such as Mask R-CNN or Faster R-CNN), derived from R-CNN. In these complex architectures, a crucial role is played by the Region of Interest (RoI) extraction layer, devoted to extract a coherent subset of features from a single Feature Pyramid Network (FPN) layer attached on top of a backbone. This paper is motivated by the need to overcome to the limitations of existing RoI extractors which select only one (the best) layer from FPN. Our intuition is that all the layers of FPN retain useful information. Therefore, the proposed layer (called Generic RoI Extractor - GRoIE) introduces non-local building blocks and attention mechanisms to boost the performance. A comprehensive ablation study at component level is conducted to find the best set of algorithms and parameters for the GRoIE layer. Moreover, GRoIE can be integrated seamlessly with every two-stage architecture for both object detection and instance segmentation tasks. Therefore, the improvements brought by the use of GRoIE in different state-of-the-art architectures are also evaluated. The proposed layer leads up to gain a 1.1% AP on bounding box detection and 1.7% AP on instance segmentation. The code is publicly available on GitHub repository at https://github.com/IMPLabUniPr/mmdetection-groie
Abstract:This paper considers the task of matching images and sentences by learning a visual-textual embedding space for cross-modal retrieval. Finding such a space is a challenging task since the features and representations of text and image are not comparable. In this work, we introduce an end-to-end deep multimodal convolutional-recurrent network for learning both vision and language representations simultaneously to infer image-text similarity. The model learns which pairs are a match (positive) and which ones are a mismatch (negative) using a hinge-based triplet ranking. To learn about the joint representations, we leverage our newly extracted collection of tweets from Twitter. The main characteristic of our dataset is that the images and tweets are not standardized the same as the benchmarks. Furthermore, there can be a higher semantic correlation between the pictures and tweets contrary to benchmarks in which the descriptions are well-organized. Experimental results on MS-COCO benchmark dataset show that our model outperforms certain methods presented previously and has competitive performance compared to the state-of-the-art. The code and dataset have been made available publicly.