Abstract:Knowledge graphs (KGs) are becoming essential resources for many downstream applications. However, their incompleteness may limit their potential. Thus, continuous curation is needed to mitigate this problem. One of the strategies to address this problem is KG alignment, i.e., forming a more complete KG by merging two or more KGs. This paper proposes i-Align, an interpretable KG alignment model. Unlike the existing KG alignment models, i-Align provides an explanation for each alignment prediction while maintaining high alignment performance. Experts can use the explanation to check the correctness of the alignment prediction. Thus, the high quality of a KG can be maintained during the curation process (e.g., the merging process of two KGs). To this end, a novel Transformer-based Graph Encoder (Trans-GE) is proposed as a key component of i-Align for aggregating information from entities' neighbors (structures). Trans-GE uses Edge-gated Attention that combines the adjacency matrix and the self-attention matrix to learn a gating mechanism to control the information aggregation from the neighboring entities. It also uses historical embeddings, allowing Trans-GE to be trained over mini-batches, or smaller sub-graphs, to address the scalability issue when encoding a large KG. Another component of i-Align is a Transformer encoder for aggregating entities' attributes. This way, i-Align can generate explanations in the form of a set of the most influential attributes/neighbors based on attention weights. Extensive experiments are conducted to show the power of i-Align. The experiments include several aspects, such as the model's effectiveness for aligning KGs, the quality of the generated explanations, and its practicality for aligning large KGs. The results show the effectiveness of i-Align in these aspects.
Abstract:The task of entity alignment between knowledge graphs (KGs) aims to identify every pair of entities from two different KGs that represent the same entity. Many machine learning-based methods have been proposed for this task. However, to our best knowledge, existing methods all require manually crafted seed alignments, which are expensive to obtain. In this paper, we propose the first fully automatic alignment method named AutoAlign, which does not require any manually crafted seed alignments. Specifically, for predicate embeddings, AutoAlign constructs a predicate-proximity-graph with the help of large language models to automatically capture the similarity between predicates across two KGs. For entity embeddings, AutoAlign first computes the entity embeddings of each KG independently using TransE, and then shifts the two KGs' entity embeddings into the same vector space by computing the similarity between entities based on their attributes. Thus, both predicate alignment and entity alignment can be done without manually crafted seed alignments. AutoAlign is not only fully automatic, but also highly effective. Experiments using real-world KGs show that AutoAlign improves the performance of entity alignment significantly compared to state-of-the-art methods.
Abstract:The task of entity alignment between knowledge graphs (KGs) aims to identify every pair of entities from two different KGs that represent the same entity. Many machine learning-based methods have been proposed for this task. However, to our best knowledge, existing methods all require manually crafted seed alignments, which are expensive to obtain. In this paper, we propose the first fully automatic alignment method named TransAlign, which does not require any manually crafted seed alignments. Specifically, for predicate embeddings, TransAlign constructs a predicate-proximity-graph to automatically capture the similarity between predicates across two KGs by learning the attention of entity types. For entity embeddings, TransAlign first computes the entity embeddings of each KG independently using TransE, and then shifts the two KGs' entity embeddings into the same vector space by computing the similarity between entities based on their attributes. Thus, both predicate alignment and entity alignment can be done without manually crafted seed alignments. TransAlign is not only fully automatic, but also highly effective. Experiments using real-world KGs show that TransAlign improves the accuracy of entity alignment significantly compared to state-of-the-art methods.