Abstract:When it comes to expensive black-box optimization problems, Bayesian Optimization (BO) is a well-known and powerful solution. Many real-world applications involve a large number of dimensions, hence scaling BO to high dimension is of much interest. However, state-of-the-art high-dimensional BO methods still suffer from the curse of dimensionality, highlighting the need for further improvements. In this work, we introduce BOIDS, a novel high-dimensional BO algorithm that guides optimization by a sequence of one-dimensional direction lines using a novel tailored line-based optimization procedure. To improve the efficiency, we also propose an adaptive selection technique to identify most optimal lines for each round of line-based optimization. Additionally, we incorporate a subspace embedding technique for better scaling to high-dimensional spaces. We further provide theoretical analysis of our proposed method to analyze its convergence property. Our extensive experimental results show that BOIDS outperforms state-of-the-art baselines on various synthetic and real-world benchmark problems.
Abstract:Early detection of fuel leakage at service stations with underground petroleum storage systems is a crucial task to prevent catastrophic hazards. Current data-driven fuel leakage detection methods employ offline statistical inventory reconciliation, leading to significant detection delays. Consequently, this can result in substantial financial loss and environmental impact on the surrounding community. In this paper, we propose a novel framework called Memory-based Online Change Point Detection (MOCPD) which operates in near real-time, enabling early detection of fuel leakage. MOCPD maintains a collection of representative historical data within a size-constrained memory, along with an adaptively computed threshold. Leaks are detected when the dissimilarity between the latest data and historical memory exceeds the current threshold. An update phase is incorporated in MOCPD to ensure diversity among historical samples in the memory. With this design, MOCPD is more robust and achieves a better recall rate while maintaining a reasonable precision score. We have conducted a variety of experiments comparing MOCPD to commonly used online change point detection (CPD) baselines on real-world fuel variance data with induced leakages, actual fuel leakage data and benchmark CPD datasets. Overall, MOCPD consistently outperforms the baseline methods in terms of detection accuracy, demonstrating its applicability to fuel leakage detection and CPD problems.
Abstract:Algorithmic recourse provides actions to individuals who have been adversely affected by automated decision-making and helps them achieve a desired outcome. Knowing the recourse, however, does not guarantee that users would implement it perfectly, either due to environmental variability or personal choices. Recourse generation should thus anticipate its sub-optimal or noisy implementation. While several approaches have constructed recourse that accounts for robustness to small perturbation (i.e., noisy recourse implementation), they assume an entire recourse to be implemented in a single step and thus apply one-off uniform noise to it. Such assumption is unrealistic since recourse often includes multiple sequential steps which becomes harder to implement and subject to more noise. In this work, we consider recourse under plausible noise that adapts to the local data geometry and accumulates at every step of the way. We frame this problem as a Markov Decision Process and demonstrate that the distribution of our plausible noise satisfies the Markov property. We then propose the RObust SEquential (ROSE) recourse generator to output a sequence of steps that will lead to the desired outcome even under imperfect implementation. Given our plausible modelling of sub-optimal human actions and greater recourse robustness to accumulated uncertainty, ROSE can grant users higher chances of success under low recourse costs. Empirical evaluation shows our algorithm manages the inherent trade-off between recourse robustness and costs more effectively while ensuring its low sparsity and fast computation.
Abstract:Matching in two-sided markets such as ride-hailing has recently received significant attention. However, existing studies on ride-hailing mainly focus on optimising efficiency, and fairness issues in ride-hailing have been neglected. Fairness issues in ride-hailing, including significant earning differences between drivers and variance of passenger waiting times among different locations, have potential impacts on economic and ethical aspects. The recent studies that focus on fairness in ride-hailing exploit traditional optimisation methods and the Markov Decision Process to balance efficiency and fairness. However, there are several issues in these existing studies, such as myopic short-term decision-making from traditional optimisation and instability of fairness in a comparably longer horizon from both traditional optimisation and Markov Decision Process-based methods. To address these issues, we propose a dynamic Markov Decision Process model to alleviate fairness issues currently faced by ride-hailing, and seek a balance between efficiency and fairness, with two distinct characteristics: (i) a prediction module to predict the number of requests that will be raised in the future from different locations to allow the proposed method to consider long-term fairness based on the whole timeline instead of consider fairness only based on historical and current data patterns; (ii) a customised scalarisation function for multi-objective multi-agent Q Learning that aims to balance efficiency and fairness. Extensive experiments on a publicly available real-world dataset demonstrate that our proposed method outperforms existing state-of-the-art methods.
Abstract:Point-of-interest (POI) recommendation, a form of context-aware recommendation, takes into account spatio-temporal constraints and contexts like distance, peak business hours, and previous user check-ins. Given the ability of these kinds of systems to influence not just the consumer's travel experience, but also the POI's business, it is important to consider fairness from multiple perspectives. Unfortunately, these systems tend to provide less accurate recommendations to inactive users, and less exposure to unpopular POIs. The goal of this paper is to develop a post-filter methodology that incorporates provider and consumer fairness factors into pre-existing recommendation models, to satisfy fairness metrics like item exposure, and performance metrics like precision and distance, making the system more sustainable to both consumers and providers. Experiments have shown that using a linear scoring model for provider fairness in re-scoring recommended items yields the best tradeoff between performance and long-tail exposure, in some cases without a significant decrease in precision. When attempting to address consumer fairness by recommending more popular POIs to inactive users, the result was an increase in precision for only some recommendation models and datasets. Finally, when considering the tradeoff between both parameters, the combinations that reached the Pareto front of consumer and provider fairness, unfortunately, achieved the lowest precision values. We find that the nature of this tradeoff depends heavily on the model and the dataset.
Abstract:Dynamic Vehicle Routing Problem (DVRP), is an extension of the classic Vehicle Routing Problem (VRP), which is a fundamental problem in logistics and transportation. Typically, DVRPs involve two stakeholders: service providers that deliver services to customers and customers who raise requests from different locations. Many real-world applications can be formulated as DVRP such as ridesharing and non-compliance capture. Apart from original objectives like optimising total utility or efficiency, DVRP should also consider fairness for all parties. Unfairness can induce service providers and customers to give up on the systems, leading to negative financial and social impacts. However, most existing DVRP-related applications focus on improving fairness from a single side, and there have been few works considering two-sided fairness and utility optimisation concurrently. To this end, we propose a novel framework, a Two-sided Fairness-aware Genetic Algorithm (named 2FairGA), which expands the genetic algorithm from the original objective solely focusing on utility to multi-objectives that incorporate two-sided fairness. Subsequently, the impact of injecting two fairness definitions into the utility-focused model and the correlation between any pair of the three objectives are explored. Extensive experiments demonstrate the superiority of our proposed framework compared to the state-of-the-art.
Abstract:Bayesian Optimization (BO) is an effective method for finding the global optimum of expensive black-box functions. However, it is well known that applying BO to high-dimensional optimization problems is challenging. To address this issue, a promising solution is to use a local search strategy that partitions the search domain into local regions with high likelihood of containing the global optimum, and then use BO to optimize the objective function within these regions. In this paper, we propose a novel technique for defining the local regions using the Covariance Matrix Adaptation (CMA) strategy. Specifically, we use CMA to learn a search distribution that can estimate the probabilities of data points being the global optimum of the objective function. Based on this search distribution, we then define the local regions consisting of data points with high probabilities of being the global optimum. Our approach serves as a meta-algorithm as it can incorporate existing black-box BO optimizers, such as BO, TuRBO, and BAxUS, to find the global optimum of the objective function within our derived local regions. We evaluate our proposed method on various benchmark synthetic and real-world problems. The results demonstrate that our method outperforms existing state-of-the-art techniques.
Abstract:SCONE-GAN presents an end-to-end image translation, which is shown to be effective for learning to generate realistic and diverse scenery images. Most current image-to-image translation approaches are devised as two mappings: a translation from the source to target domain and another to represent its inverse. While successful in many applications, these approaches may suffer from generating trivial solutions with limited diversity. That is because these methods learn more frequent associations rather than the scene structures. To mitigate the problem, we propose SCONE-GAN that utilises graph convolutional networks to learn the objects dependencies, maintain the image structure and preserve its semantics while transferring images into the target domain. For more realistic and diverse image generation we introduce style reference image. We enforce the model to maximize the mutual information between the style image and output. The proposed method explicitly maximizes the mutual information between the related patches, thus encouraging the generator to produce more diverse images. We validate the proposed algorithm for image-to-image translation and stylizing outdoor images. Both qualitative and quantitative results demonstrate the effectiveness of our approach on four dataset.
Abstract:Counterfactuals operationalised through algorithmic recourse have become a powerful tool to make artificial intelligence systems explainable. Conceptually, given an individual classified as y -- the factual -- we seek actions such that their prediction becomes the desired class y' -- the counterfactual. This process offers algorithmic recourse that is (1) easy to customise and interpret, and (2) directly aligned with the goals of each individual. However, the properties of a "good" counterfactual are still largely debated; it remains an open challenge to effectively locate a counterfactual along with its corresponding recourse. Some strategies use gradient-driven methods, but these offer no guarantees on the feasibility of the recourse and are open to adversarial attacks on carefully created manifolds. This can lead to unfairness and lack of robustness. Other methods are data-driven, which mostly addresses the feasibility problem at the expense of privacy, security and secrecy as they require access to the entire training data set. Here, we introduce LocalFACE, a model-agnostic technique that composes feasible and actionable counterfactual explanations using locally-acquired information at each step of the algorithmic recourse. Our explainer preserves the privacy of users by only leveraging data that it specifically requires to construct actionable algorithmic recourse, and protects the model by offering transparency solely in the regions deemed necessary for the intervention.
Abstract:Knowledge graphs (KGs) are becoming essential resources for many downstream applications. However, their incompleteness may limit their potential. Thus, continuous curation is needed to mitigate this problem. One of the strategies to address this problem is KG alignment, i.e., forming a more complete KG by merging two or more KGs. This paper proposes i-Align, an interpretable KG alignment model. Unlike the existing KG alignment models, i-Align provides an explanation for each alignment prediction while maintaining high alignment performance. Experts can use the explanation to check the correctness of the alignment prediction. Thus, the high quality of a KG can be maintained during the curation process (e.g., the merging process of two KGs). To this end, a novel Transformer-based Graph Encoder (Trans-GE) is proposed as a key component of i-Align for aggregating information from entities' neighbors (structures). Trans-GE uses Edge-gated Attention that combines the adjacency matrix and the self-attention matrix to learn a gating mechanism to control the information aggregation from the neighboring entities. It also uses historical embeddings, allowing Trans-GE to be trained over mini-batches, or smaller sub-graphs, to address the scalability issue when encoding a large KG. Another component of i-Align is a Transformer encoder for aggregating entities' attributes. This way, i-Align can generate explanations in the form of a set of the most influential attributes/neighbors based on attention weights. Extensive experiments are conducted to show the power of i-Align. The experiments include several aspects, such as the model's effectiveness for aligning KGs, the quality of the generated explanations, and its practicality for aligning large KGs. The results show the effectiveness of i-Align in these aspects.