Intelligent System Laboratory, University of Bristol
Abstract:The use of machine learning and AI on electronic health records (EHRs) holds substantial potential for clinical insight. However, this approach faces significant challenges due to data heterogeneity, sparsity, temporal misalignment, and limited labeled outcomes. In this context, we leverage a linked EHR dataset of approximately one million de-identified individuals from Bristol, North Somerset, and South Gloucestershire, UK, to characterize urinary tract infections (UTIs) and develop predictive models focused on data quality, fairness and transparency. A comprehensive data pre-processing and curation pipeline transforms the raw EHR data into a structured format suitable for AI modeling. Given the limited availability and biases of ground truth UTI outcomes, we introduce a UTI risk estimation framework informed by clinical expertise to estimate UTI risk across individual patient timelines. Using this framework, we built pairwise XGBoost models to differentiate UTI risk categories with explainable AI techniques to identify key predictors while ensuring interpretability. Our findings reveal differences in clinical and demographic factors across risk groups, offering insights into UTI risk stratification and progression. This study demonstrates the added value of AI-driven insights into UTI clinical decision-making while prioritizing interpretability, transparency, and fairness, underscoring the importance of sound data practices in advancing health outcomes.
Abstract:There is a growing need to understand how digital systems can support clinical decision-making, particularly as artificial intelligence (AI) models become increasingly complex and less human-interpretable. This complexity raises concerns about trustworthiness, impacting safe and effective adoption of such technologies. Improved understanding of decision-making processes and requirements for explanations coming from decision support tools is a vital component in providing effective explainable solutions. This is particularly relevant in the data-intensive, fast-paced environments of intensive care units (ICUs). To explore these issues, group interviews were conducted with seven ICU clinicians, representing various roles and experience levels. Thematic analysis revealed three core themes: (T1) ICU decision-making relies on a wide range of factors, (T2) the complexity of patient state is challenging for shared decision-making, and (T3) requirements and capabilities of AI decision support systems. We include design recommendations from clinical input, providing insights to inform future AI systems for intensive care.
Abstract:The subjective quality of natural signals can be approximated with objective perceptual metrics. Designed to approximate the perceptual behaviour of human observers, perceptual metrics often reflect structures found in natural signals and neurological pathways. Models trained with perceptual metrics as loss functions can capture perceptually meaningful features from the structures held within these metrics. We demonstrate that using features extracted from autoencoders trained with perceptual losses can improve performance on music understanding tasks, i.e. genre classification, over using these metrics directly as distances when learning a classifier. This result suggests improved generalisation to novel signals when using perceptual metrics as loss functions for representation learning.
Abstract:We evaluate the effectiveness of combining brain connectivity metrics with signal statistics for early stage Parkinson's Disease (PD) classification using electroencephalogram data (EEG). The data is from 5 arousal states - wakeful and four sleep stages (N1, N2, N3 and REM). Our pipeline uses an Ada Boost model for classification on a challenging early stage PD classification task with with only 30 participants (11 PD , 19 Healthy Control). Evaluating 9 brain connectivity metrics we find the best connectivity metric to be different for each arousal state with Phase Lag Index achieving the highest individual classification accuracy of 86\% on N1 data. Further to this our pipeline using regional signal statistics achieves an accuracy of 78\%, using brain connectivity only achieves an accuracy of 86\% whereas combining the two achieves a best accuracy of 91\%. This best performance is achieved on N1 data using Phase Lag Index (PLI) combined with statistics derived from the frequency characteristics of the EEG signal. This model also achieves a recall of 80 \% and precision of 96\%. Furthermore we find that on data from each arousal state, combining PLI with regional signal statistics improves classification accuracy versus using signal statistics or brain connectivity alone. Thus we conclude that combining brain connectivity statistics with regional EEG statistics is optimal for classifier performance on early stage Parkinson's. Additionally, we find outperformance of N1 EEG for classification of Parkinson's and expect this could be due to disrupted N1 sleep in PD. This should be explored in future work.
Abstract:Quantifying a patient's health status provides clinicians with insight into patient risk, and the ability to better triage and manage resources. Early Warning Scores (EWS) are widely deployed to measure overall health status, and risk of adverse outcomes, in hospital patients. However, current EWS are limited both by their lack of personalisation and use of static observations. We propose a pipeline that groups intensive care unit patients by the trajectories of observations data throughout their stay as a basis for the development of personalised risk predictions. Feature importance is considered to provide model explainability. Using the MIMIC-IV dataset, six clusters were identified, capturing differences in disease codes, observations, lengths of admissions and outcomes. Applying the pipeline to data from just the first four hours of each ICU stay assigns the majority of patients to the same cluster as when the entire stay duration is considered. In-hospital mortality prediction models trained on individual clusters had higher F1 score performance in five of the six clusters when compared against the unclustered patient cohort. The pipeline could form the basis of a clinical decision support tool, working to improve the clinical characterisation of risk groups and the early detection of patient deterioration.
Abstract:Reinforcement Learning (RL) has shown remarkable success in solving relatively complex tasks, yet the deployment of RL systems in real-world scenarios poses significant challenges related to safety and robustness. This paper aims to identify and further understand those challenges thorough the exploration of the main dimensions of the safe and robust RL landscape, encompassing algorithmic, ethical, and practical considerations. We conduct a comprehensive review of methodologies and open problems that summarizes the efforts in recent years to address the inherent risks associated with RL applications. After discussing and proposing definitions for both safe and robust RL, the paper categorizes existing research works into different algorithmic approaches that enhance the safety and robustness of RL agents. We examine techniques such as uncertainty estimation, optimisation methodologies, exploration-exploitation trade-offs, and adversarial training. Environmental factors, including sim-to-real transfer and domain adaptation, are also scrutinized to understand how RL systems can adapt to diverse and dynamic surroundings. Moreover, human involvement is an integral ingredient of the analysis, acknowledging the broad set of roles that humans can take in this context. Importantly, to aid practitioners in navigating the complexities of safe and robust RL implementation, this paper introduces a practical checklist derived from the synthesized literature. The checklist encompasses critical aspects of algorithm design, training environment considerations, and ethical guidelines. It will serve as a resource for developers and policymakers alike to ensure the responsible deployment of RL systems in many application domains.
Abstract:The two-alternative forced choice (2AFC) experimental setup is popular in the visual perception literature, where practitioners aim to understand how human observers perceive distances within triplets that consist of a reference image and two distorted versions of that image. In the past, this had been conducted in controlled environments, with a tournament-style algorithm dictating which images are shown to each participant to rank the distorted images. Recently, crowd-sourced perceptual datasets have emerged, with no images shared between triplets, making ranking impossible. Evaluating perceptual distances using this data is non-trivial, relying on reducing the collection of judgements on a triplet to a binary decision -- which is suboptimal and prone to misleading conclusions. Instead, we statistically model the underlying decision-making process during 2AFC experiments using a binomial distribution. We use maximum likelihood estimation to fit a distribution to the perceptual judgements, conditioned on the perceptual distance to test and impose consistency and smoothness between our empirical estimates of the density. This way, we can evaluate a different number of judgements per triplet, and can calculate metrics such as likelihoods of judgements according to a set of distances -- key ingredients that neural network counterparts lack.
Abstract:Perceptual metrics are traditionally used to evaluate the quality of natural signals, such as images and audio. They are designed to mimic the perceptual behaviour of human observers and usually reflect structures found in natural signals. This motivates their use as loss functions for training generative models such that models will learn to capture the structure held in the metric. We take this idea to the extreme in the audio domain by training a compressive autoencoder to reconstruct uniform noise, in lieu of natural data. We show that training with perceptual losses improves the reconstruction of spectrograms and re-synthesized audio at test time over models trained with a standard Euclidean loss. This demonstrates better generalisation to unseen natural signals when using perceptual metrics.
Abstract:In this paper we introduce learnable lattice vector quantization and demonstrate its effectiveness for learning discrete representations. Our method, termed LL-VQ-VAE, replaces the vector quantization layer in VQ-VAE with lattice-based discretization. The learnable lattice imposes a structure over all discrete embeddings, acting as a deterrent against codebook collapse, leading to high codebook utilization. Compared to VQ-VAE, our method obtains lower reconstruction errors under the same training conditions, trains in a fraction of the time, and with a constant number of parameters (equal to the embedding dimension $D$), making it a very scalable approach. We demonstrate these results on the FFHQ-1024 dataset and include FashionMNIST and Celeb-A.
Abstract:Counterfactual explanations, and their associated algorithmic recourse, are typically leveraged to understand, explain, and potentially alter a prediction coming from a black-box classifier. In this paper, we propose to extend the use of counterfactuals to evaluate progress in sequential decision making tasks. To this end, we introduce a model-agnostic modular framework, TraCE (Trajectory Counterfactual Explanation) scores, which is able to distill and condense progress in highly complex scenarios into a single value. We demonstrate TraCE's utility across domains by showcasing its main properties in two case studies spanning healthcare and climate change.