Abstract:There is a growing need to understand how digital systems can support clinical decision-making, particularly as artificial intelligence (AI) models become increasingly complex and less human-interpretable. This complexity raises concerns about trustworthiness, impacting safe and effective adoption of such technologies. Improved understanding of decision-making processes and requirements for explanations coming from decision support tools is a vital component in providing effective explainable solutions. This is particularly relevant in the data-intensive, fast-paced environments of intensive care units (ICUs). To explore these issues, group interviews were conducted with seven ICU clinicians, representing various roles and experience levels. Thematic analysis revealed three core themes: (T1) ICU decision-making relies on a wide range of factors, (T2) the complexity of patient state is challenging for shared decision-making, and (T3) requirements and capabilities of AI decision support systems. We include design recommendations from clinical input, providing insights to inform future AI systems for intensive care.
Abstract:Counterfactual explanations, and their associated algorithmic recourse, are typically leveraged to understand, explain, and potentially alter a prediction coming from a black-box classifier. In this paper, we propose to extend the use of counterfactuals to evaluate progress in sequential decision making tasks. To this end, we introduce a model-agnostic modular framework, TraCE (Trajectory Counterfactual Explanation) scores, which is able to distill and condense progress in highly complex scenarios into a single value. We demonstrate TraCE's utility across domains by showcasing its main properties in two case studies spanning healthcare and climate change.
Abstract:We present a pipeline in which unsupervised machine learning techniques are used to automatically identify subtypes of hospital patients admitted between 2017 and 2021 in a large UK teaching hospital. With the use of state-of-the-art explainability techniques, the identified subtypes are interpreted and assigned clinical meaning. In parallel, clinicians assessed intra-cluster similarities and inter-cluster differences of the identified patient subtypes within the context of their clinical knowledge. By confronting the outputs of both automatic and clinician-based explanations, we aim to highlight the mutual benefit of combining machine learning techniques with clinical expertise.