Abstract:When it comes to expensive black-box optimization problems, Bayesian Optimization (BO) is a well-known and powerful solution. Many real-world applications involve a large number of dimensions, hence scaling BO to high dimension is of much interest. However, state-of-the-art high-dimensional BO methods still suffer from the curse of dimensionality, highlighting the need for further improvements. In this work, we introduce BOIDS, a novel high-dimensional BO algorithm that guides optimization by a sequence of one-dimensional direction lines using a novel tailored line-based optimization procedure. To improve the efficiency, we also propose an adaptive selection technique to identify most optimal lines for each round of line-based optimization. Additionally, we incorporate a subspace embedding technique for better scaling to high-dimensional spaces. We further provide theoretical analysis of our proposed method to analyze its convergence property. Our extensive experimental results show that BOIDS outperforms state-of-the-art baselines on various synthetic and real-world benchmark problems.
Abstract:Bayesian Optimization (BO) is an effective method for finding the global optimum of expensive black-box functions. However, it is well known that applying BO to high-dimensional optimization problems is challenging. To address this issue, a promising solution is to use a local search strategy that partitions the search domain into local regions with high likelihood of containing the global optimum, and then use BO to optimize the objective function within these regions. In this paper, we propose a novel technique for defining the local regions using the Covariance Matrix Adaptation (CMA) strategy. Specifically, we use CMA to learn a search distribution that can estimate the probabilities of data points being the global optimum of the objective function. Based on this search distribution, we then define the local regions consisting of data points with high probabilities of being the global optimum. Our approach serves as a meta-algorithm as it can incorporate existing black-box BO optimizers, such as BO, TuRBO, and BAxUS, to find the global optimum of the objective function within our derived local regions. We evaluate our proposed method on various benchmark synthetic and real-world problems. The results demonstrate that our method outperforms existing state-of-the-art techniques.