Abstract:This paper explores ideas and provides a potential roadmap for the development and evaluation of physics-specific large-scale AI models, which we call Large Physics Models (LPMs). These models, based on foundation models such as Large Language Models (LLMs) - trained on broad data - are tailored to address the demands of physics research. LPMs can function independently or as part of an integrated framework. This framework can incorporate specialized tools, including symbolic reasoning modules for mathematical manipulations, frameworks to analyse specific experimental and simulated data, and mechanisms for synthesizing theories and scientific literature. We begin by examining whether the physics community should actively develop and refine dedicated models, rather than relying solely on commercial LLMs. We then outline how LPMs can be realized through interdisciplinary collaboration among experts in physics, computer science, and philosophy of science. To integrate these models effectively, we identify three key pillars: Development, Evaluation, and Philosophical Reflection. Development focuses on constructing models capable of processing physics texts, mathematical formulations, and diverse physical data. Evaluation assesses accuracy and reliability by testing and benchmarking. Finally, Philosophical Reflection encompasses the analysis of broader implications of LLMs in physics, including their potential to generate new scientific understanding and what novel collaboration dynamics might arise in research. Inspired by the organizational structure of experimental collaborations in particle physics, we propose a similarly interdisciplinary and collaborative approach to building and refining Large Physics Models. This roadmap provides specific objectives, defines pathways to achieve them, and identifies challenges that must be addressed to realise physics-specific large scale AI models.
Abstract:We introduce CRS Arena, a research platform for scalable benchmarking of Conversational Recommender Systems (CRS) based on human feedback. The platform displays pairwise battles between anonymous conversational recommender systems, where users interact with the systems one after the other before declaring either a winner or a draw. CRS Arena collects conversations and user feedback, providing a foundation for reliable evaluation and ranking of CRSs. We conduct experiments with CRS Arena on both open and closed crowdsourcing platforms, confirming that both setups produce highly correlated rankings of CRSs and conversations with similar characteristics. We release CRSArena-Dial, a dataset of 474 conversations and their corresponding user feedback, along with a preliminary ranking of the systems based on the Elo rating system. The platform is accessible at https://iai-group-crsarena.hf.space/.
Abstract:In this short paper we propose a data augmentation method for intent detection in zero-resource domains. Existing data augmentation methods rely on few labelled examples for each intent category, which can be expensive in settings with many possible intents. We use a two-stage approach: First, we generate utterances for intent labels using an open-source large language model in a zero-shot setting. Second, we develop a smaller sequence-to-sequence model (the Refiner), to improve the generated utterances. The Refiner is fine-tuned on seen domains and then applied to unseen domains. We evaluate our method by training an intent classifier on the generated data, and evaluating it on real (human) data. We find that the Refiner significantly improves the data utility and diversity over the zero-shot LLM baseline for unseen domains and over common baseline approaches. Our results indicate that a two-step approach of a generative LLM in zero-shot setting and a smaller sequence-to-sequence model can provide high-quality data for intent detection.
Abstract:Entity linking (EL) in conversations faces notable challenges in practical applications, primarily due to the scarcity of entity-annotated conversational datasets and sparse knowledge bases (KB) containing domain-specific, long-tail entities. We designed targeted evaluation scenarios to measure the efficacy of EL models under resource constraints. Our evaluation employs two KBs: Fandom, exemplifying real-world EL complexities, and the widely used Wikipedia. First, we assess EL models' ability to generalize to a new unfamiliar KB using Fandom and a novel zero-shot conversational entity linking dataset that we curated based on Reddit discussions on Fandom entities. We then evaluate the adaptability of EL models to conversational settings without prior training. Our results indicate that current zero-shot EL models falter when introduced to new, domain-specific KBs without prior training, significantly dropping in performance. Our findings reveal that previous evaluation approaches fall short of capturing real-world complexities for zero-shot EL, highlighting the necessity for new approaches to design and assess conversational EL models to adapt to limited resources. The evaluation setup and the dataset proposed in this research are made publicly available.
Abstract:The future of conversational agents will provide users with personalized information responses. However, a significant challenge in developing models is the lack of large-scale dialogue datasets that span multiple sessions and reflect real-world user preferences. Previous approaches rely on experts in a wizard-of-oz setup that is difficult to scale, particularly for personalized tasks. Our method, LAPS, addresses this by using large language models (LLMs) to guide a single human worker in generating personalized dialogues. This method has proven to speed up the creation process and improve quality. LAPS can collect large-scale, human-written, multi-session, and multi-domain conversations, including extracting user preferences. When compared to existing datasets, LAPS-produced conversations are as natural and diverse as expert-created ones, which stays in contrast with fully synthetic methods. The collected dataset is suited to train preference extraction and personalized response generation. Our results show that responses generated explicitly using extracted preferences better match user's actual preferences, highlighting the value of using extracted preferences over simple dialogue history. Overall, LAPS introduces a new method to leverage LLMs to create realistic personalized conversational data more efficiently and effectively than previous methods.
Abstract:Large language models (LLMs) memorize a vast amount of factual knowledge, exhibiting strong performance across diverse tasks and domains. However, it has been observed that the performance diminishes when dealing with less-popular or low-frequency concepts and entities, for example in domain specific applications. The two prominent approaches to enhance the performance of LLMs on low-frequent topics are: Retrieval Augmented Generation (RAG) and fine-tuning (FT) over synthetic data. This paper explores and evaluates the impact of RAG and FT on customizing LLMs in handling low-frequency entities on question answering task. Our findings indicate that FT significantly boosts the performance across entities of varying popularity, especially in the most and least popular groups, while RAG surpasses other methods. Additionally, the success of both RAG and FT approaches is amplified by advancements in retrieval and data augmentation techniques. We release our data and code at https://github.com/informagi/RAGvsFT.
Abstract:MMEAD, or MS MARCO Entity Annotations and Disambiguations, is a resource for entity links for the MS MARCO datasets. We specify a format to store and share links for both document and passage collections of MS MARCO. Following this specification, we release entity links to Wikipedia for documents and passages in both MS MARCO collections (v1 and v2). Entity links have been produced by the REL and BLINK systems. MMEAD is an easy-to-install Python package, allowing users to load the link data and entity embeddings effortlessly. Using MMEAD takes only a few lines of code. Finally, we show how MMEAD can be used for IR research that uses entity information. We show how to improve recall@1000 and MRR@10 on more complex queries on the MS MARCO v1 passage dataset by using this resource. We also demonstrate how entity expansions can be used for interactive search applications.
Abstract:Advancements in conversational systems have revolutionized information access, surpassing the limitations of single queries. However, developing dialogue systems requires a large amount of training data, which is a challenge in low-resource domains and languages. Traditional data collection methods like crowd-sourcing are labor-intensive and time-consuming, making them ineffective in this context. Data augmentation (DA) is an affective approach to alleviate the data scarcity problem in conversational systems. This tutorial provides a comprehensive and up-to-date overview of DA approaches in the context of conversational systems. It highlights recent advances in conversation augmentation, open domain and task-oriented conversation generation, and different paradigms of evaluating these models. We also discuss current challenges and future directions in order to help researchers and practitioners to further advance the field in this area.
Abstract:Building conversational agents that can have natural and knowledge-grounded interactions with humans requires understanding user utterances. Entity Linking (EL) is an effective and widely used method for understanding natural language text and connecting it to external knowledge. It is, however, shown that existing EL methods developed for annotating documents are suboptimal for conversations, where personal entities (e.g., "my cars") and concepts are essential for understanding user utterances. In this paper, we introduce a collection and a tool for entity linking in conversations. We collect EL annotations for 1327 conversational utterances, consisting of links to named entities, concepts, and personal entities. The dataset is used for training our toolkit for conversational entity linking, CREL. Unlike existing EL methods, CREL is developed to identify both named entities and concepts. It also utilizes coreference resolution techniques to identify personal entities and references to the explicit entity mentions in the conversations. We compare CREL with state-of-the-art techniques and show that it outperforms all existing baselines.
Abstract:Pre-trained language models such as BERT have been a key ingredient to achieve state-of-the-art results on a variety of tasks in natural language processing and, more recently, also in information retrieval.Recent research even claims that BERT is able to capture factual knowledge about entity relations and properties, the information that is commonly obtained from knowledge graphs. This paper investigates the following question: Do BERT-based entity retrieval models benefit from additional entity information stored in knowledge graphs? To address this research question, we map entity embeddings into the same input space as a pre-trained BERT model and inject these entity embeddings into the BERT model. This entity-enriched language model is then employed on the entity retrieval task. We show that the entity-enriched BERT model improves effectiveness on entity-oriented queries over a regular BERT model, establishing a new state-of-the-art result for the entity retrieval task, with substantial improvements for complex natural language queries and queries requesting a list of entities with a certain property. Additionally, we show that the entity information provided by our entity-enriched model particularly helps queries related to less popular entities. Last, we observe empirically that the entity-enriched BERT models enable fine-tuning on limited training data, which otherwise would not be feasible due to the known instabilities of BERT in few-sample fine-tuning, thereby contributing to data-efficient training of BERT for entity search.