Abstract:We present Vinci, a vision-language system designed to provide real-time, comprehensive AI assistance on portable devices. At its core, Vinci leverages EgoVideo-VL, a novel model that integrates an egocentric vision foundation model with a large language model (LLM), enabling advanced functionalities such as scene understanding, temporal grounding, video summarization, and future planning. To enhance its utility, Vinci incorporates a memory module for processing long video streams in real time while retaining contextual history, a generation module for producing visual action demonstrations, and a retrieval module that bridges egocentric and third-person perspectives to provide relevant how-to videos for skill acquisition. Unlike existing systems that often depend on specialized hardware, Vinci is hardware-agnostic, supporting deployment across a wide range of devices, including smartphones and wearable cameras. In our experiments, we first demonstrate the superior performance of EgoVideo-VL on multiple public benchmarks, showcasing its vision-language reasoning and contextual understanding capabilities. We then conduct a series of user studies to evaluate the real-world effectiveness of Vinci, highlighting its adaptability and usability in diverse scenarios. We hope Vinci can establish a new framework for portable, real-time egocentric AI systems, empowering users with contextual and actionable insights. Including the frontend, backend, and models, all codes of Vinci are available at https://github.com/OpenGVLab/vinci.
Abstract:In egocentric video understanding, the motion of hands and objects as well as their interactions play a significant role by nature. However, existing egocentric video representation learning methods mainly focus on aligning video representation with high-level narrations, overlooking the intricate dynamics between hands and objects. In this work, we aim to integrate the modeling of fine-grained hand-object dynamics into the video representation learning process. Since no suitable data is available, we introduce HOD, a novel pipeline employing a hand-object detector and a large language model to generate high-quality narrations with detailed descriptions of hand-object dynamics. To learn these fine-grained dynamics, we propose EgoVideo, a model with a new lightweight motion adapter to capture fine-grained hand-object motion information. Through our co-training strategy, EgoVideo effectively and efficiently leverages the fine-grained hand-object dynamics in the HOD data. Extensive experiments demonstrate that our method achieves state-of-the-art performance across multiple egocentric downstream tasks, including improvements of 6.3% in EK-100 multi-instance retrieval, 5.7% in EK-100 classification, and 16.3% in EGTEA classification in zero-shot settings. Furthermore, our model exhibits robust generalization capabilities in hand-object interaction and robot manipulation tasks. Code and data are available at https://github.com/OpenRobotLab/EgoHOD/.
Abstract:We introduce Vinci, a real-time embodied smart assistant built upon an egocentric vision-language model. Designed for deployment on portable devices such as smartphones and wearable cameras, Vinci operates in an "always on" mode, continuously observing the environment to deliver seamless interaction and assistance. Users can wake up the system and engage in natural conversations to ask questions or seek assistance, with responses delivered through audio for hands-free convenience. With its ability to process long video streams in real-time, Vinci can answer user queries about current observations and historical context while also providing task planning based on past interactions. To further enhance usability, Vinci integrates a video generation module that creates step-by-step visual demonstrations for tasks that require detailed guidance. We hope that Vinci can establish a robust framework for portable, real-time egocentric AI systems, empowering users with contextual and actionable insights. We release the complete implementation for the development of the device in conjunction with a demo web platform to test uploaded videos at https://github.com/OpenGVLab/vinci.
Abstract:Most existing video understanding benchmarks for multimodal large language models (MLLMs) focus only on short videos. The limited number of benchmarks for long video understanding often rely solely on multiple-choice questions (MCQs). However, because of the inherent limitation of MCQ-based evaluation and the increasing reasoning ability of MLLMs, models can give the current answer purely by combining short video understanding with elimination, without genuinely understanding the video content. To address this gap, we introduce CG-Bench, a novel benchmark designed for clue-grounded question answering in long videos. CG-Bench emphasizes the model's ability to retrieve relevant clues for questions, enhancing evaluation credibility. It features 1,219 manually curated videos categorized by a granular system with 14 primary categories, 171 secondary categories, and 638 tertiary categories, making it the largest benchmark for long video analysis. The benchmark includes 12,129 QA pairs in three major question types: perception, reasoning, and hallucination. Compensating the drawbacks of pure MCQ-based evaluation, we design two novel clue-based evaluation methods: clue-grounded white box and black box evaluations, to assess whether the model generates answers based on the correct understanding of the video. We evaluate multiple closed-source and open-source MLLMs on CG-Bench. Results indicate that current models significantly underperform in understanding long videos compared to short ones, and a significant gap exists between open-source and commercial models. We hope CG-Bench can advance the development of more trustworthy and capable MLLMs for long video understanding. All annotations and video data are released at https://cg-bench.github.io/leaderboard/.
Abstract:In this report, we present our solutions to the EgoVis Challenges in CVPR 2024, including five tracks in the Ego4D challenge and three tracks in the EPIC-Kitchens challenge. Building upon the video-language two-tower model and leveraging our meticulously organized egocentric video data, we introduce a novel foundation model called EgoVideo. This model is specifically designed to cater to the unique characteristics of egocentric videos and provides strong support for our competition submissions. In the Ego4D challenges, we tackle various tasks including Natural Language Queries, Step Grounding, Moment Queries, Short-term Object Interaction Anticipation, and Long-term Action Anticipation. In addition, we also participate in the EPIC-Kitchens challenge, where we engage in the Action Recognition, Multiple Instance Retrieval, and Domain Adaptation for Action Recognition tracks. By adapting EgoVideo to these diverse tasks, we showcase its versatility and effectiveness in different egocentric video analysis scenarios, demonstrating the powerful representation ability of EgoVideo as an egocentric foundation model. Our codebase and pretrained models are publicly available at https://github.com/OpenGVLab/EgoVideo.
Abstract:The black-box nature of deep learning models has raised concerns about their interpretability for successful deployment in real-world clinical applications. To address the concerns, eXplainable Artificial Intelligence (XAI) aims to provide clear and understandable explanations of the decision-making process. In the medical domain, concepts such as attributes of lesions or abnormalities serve as key evidence for deriving diagnostic results. However, existing concept-based models mainly depend on concepts that appear independently and require fine-grained concept annotations such as bounding boxes. A medical image usually contains multiple concepts and the fine-grained concept annotations are difficult to acquire. In this paper, we propose a novel Concept-Attention Whitening (CAW) framework for interpretable skin lesion diagnosis. CAW is comprised of a disease diagnosis branch and a concept alignment branch. In the former branch, we train the CNN with a CAW layer inserted to perform skin lesion diagnosis. The CAW layer decorrelates features and aligns image features to conceptual meanings via an orthogonal matrix. In the latter branch, we calculate the orthogonal matrix under the guidance of the concept attention mask. We particularly introduce a weakly-supervised concept mask generator that only leverages coarse concept labels for filtering local regions that are relevant to certain concepts, improving the optimization of the orthogonal matrix. Extensive experiments on two public skin lesion diagnosis datasets demonstrated that CAW not only enhanced interpretability but also maintained a state-of-the-art diagnostic performance.
Abstract:Due to the complexity of medical image acquisition and the difficulty of annotation, medical image datasets inevitably contain noise. Noisy data with wrong labels affects the robustness and generalization ability of deep neural networks. Previous noise learning methods mainly considered noise arising from images being mislabeled, i.e. label noise, assuming that all mislabeled images are of high image quality. However, medical images are prone to suffering extreme quality issues, i.e. data noise, where discriminative visual features are missing for disease diagnosis. In this paper, we propose a noise learning framework, termed as QMix, that learns a robust disease diagnosis model under mixed noise. QMix alternates between sample separation and quality-aware semisupervised training in each training epoch. In the sample separation phase, we design a joint uncertainty-loss criterion to effectively separate (1) correctly labeled images; (2) mislabeled images with high quality and (3) mislabeled images with low quality. In the semi-supervised training phase, we train a disease diagnosis model to learn robust feature representation from the separated samples. Specifically, we devise a sample-reweighing loss to mitigate the effect of mislabeled images with low quality during training. Meanwhile, a contrastive enhancement loss is proposed to further distinguish mislabeled images with low quality from correctly labeled images. QMix achieved state-of-the-art disease diagnosis performance on five public retinal image datasets and exhibited substantial improvement on robustness against mixed noise.
Abstract:Being able to map the activities of others into one's own point of view is one fundamental human skill even from a very early age. Taking a step toward understanding this human ability, we introduce EgoExoLearn, a large-scale dataset that emulates the human demonstration following process, in which individuals record egocentric videos as they execute tasks guided by demonstration videos. Focusing on the potential applications in daily assistance and professional support, EgoExoLearn contains egocentric and demonstration video data spanning 120 hours captured in daily life scenarios and specialized laboratories. Along with the videos we record high-quality gaze data and provide detailed multimodal annotations, formulating a playground for modeling the human ability to bridge asynchronous procedural actions from different viewpoints. To this end, we present benchmarks such as cross-view association, cross-view action planning, and cross-view referenced skill assessment, along with detailed analysis. We expect EgoExoLearn can serve as an important resource for bridging the actions across views, thus paving the way for creating AI agents capable of seamlessly learning by observing humans in the real world. Code and data can be found at: https://github.com/OpenGVLab/EgoExoLearn
Abstract:We introduce InternVideo2, a new video foundation model (ViFM) that achieves the state-of-the-art performance in action recognition, video-text tasks, and video-centric dialogue. Our approach employs a progressive training paradigm that unifies the different self- or weakly-supervised learning frameworks of masked video token reconstruction, cross-modal contrastive learning, and next token prediction. Different training stages would guide our model to capture different levels of structure and semantic information through different pretext tasks. At the data level, we prioritize the spatiotemporal consistency by semantically segmenting videos and generating video-audio-speech captions. This improves the alignment between video and text. We scale both data and model size for our InternVideo2. Through extensive experiments, we validate our designs and demonstrate the state-of-the-art performance on over 60 video and audio tasks. Notably, our model outperforms others on various video-related captioning, dialogue, and long video understanding benchmarks, highlighting its ability to reason and comprehend long temporal contexts. Code and models are available at https://github.com/OpenGVLab/InternVideo2/.
Abstract:To make a more accurate diagnosis of COVID-19, we propose a straightforward yet effective model. Firstly, we analyse the characteristics of 3D CT scans and remove the non-lung parts, facilitating the model to focus on lesion-related areas and reducing computational cost. We use ResNeSt50 as the strong feature extractor, initializing it with pretrained weights which have COVID-19-specific prior knowledge. Our model achieves a Macro F1 Score of 0.94 on the validation set of the 4th COV19D Competition Challenge $\mathrm{I}$, surpassing the baseline by 16%. This indicates its effectiveness in distinguishing between COVID-19 and non-COVID-19 cases, making it a robust method for COVID-19 detection.