Abstract:Multimodal Question Answering (MMQA) is crucial as it enables comprehensive understanding and accurate responses by integrating insights from diverse data representations such as tables, charts, and text. Most existing researches in MMQA only focus on two modalities such as image-text QA, table-text QA and chart-text QA, and there remains a notable scarcity in studies that investigate the joint analysis of text, tables, and charts. In this paper, we present C$\text{T}^2$C-QA, a pioneering Chinese reasoning-based QA dataset that includes an extensive collection of text, tables, and charts, meticulously compiled from 200 selectively sourced webpages. Our dataset simulates real webpages and serves as a great test for the capability of the model to analyze and reason with multimodal data, because the answer to a question could appear in various modalities, or even potentially not exist at all. Additionally, we present AED (\textbf{A}llocating, \textbf{E}xpert and \textbf{D}esicion), a multi-agent system implemented through collaborative deployment, information interaction, and collective decision-making among different agents. Specifically, the Assignment Agent is in charge of selecting and activating expert agents, including those proficient in text, tables, and charts. The Decision Agent bears the responsibility of delivering the final verdict, drawing upon the analytical insights provided by these expert agents. We execute a comprehensive analysis, comparing AED with various state-of-the-art models in MMQA, including GPT-4. The experimental outcomes demonstrate that current methodologies, including GPT-4, are yet to meet the benchmarks set by our dataset.
Abstract:Owing to a large amount of multi-modal data in modern medical systems, such as medical images and reports, Medical Vision-Language Pre-training (Med-VLP) has demonstrated incredible achievements in coarse-grained downstream tasks (i.e., medical classification, retrieval, and visual question answering). However, the problem of transferring knowledge learned from Med-VLP to fine-grained multi-organ segmentation tasks has barely been investigated. Multi-organ segmentation is challenging mainly due to the lack of large-scale fully annotated datasets and the wide variation in the shape and size of the same organ between individuals with different diseases. In this paper, we propose a novel pre-training & fine-tuning framework for Multi-Organ Segmentation by harnessing Medical repOrt Supervision (MOSMOS). Specifically, we first introduce global contrastive learning to maximally align the medical image-report pairs in the pre-training stage. To remedy the granularity discrepancy, we further leverage multi-label recognition to implicitly learn the semantic correspondence between image pixels and organ tags. More importantly, our pre-trained models can be transferred to any segmentation model by introducing the pixel-tag attention maps. Different network settings, i.e., 2D U-Net and 3D UNETR, are utilized to validate the generalization. We have extensively evaluated our approach using different diseases and modalities on BTCV, AMOS, MMWHS, and BRATS datasets. Experimental results in various settings demonstrate the effectiveness of our framework. This framework can serve as the foundation to facilitate future research on automatic annotation tasks under the supervision of medical reports.
Abstract:To make a more accurate diagnosis of COVID-19, we propose a straightforward yet effective model. Firstly, we analyse the characteristics of 3D CT scans and remove the non-lung parts, facilitating the model to focus on lesion-related areas and reducing computational cost. We use ResNeSt50 as the strong feature extractor, initializing it with pretrained weights which have COVID-19-specific prior knowledge. Our model achieves a Macro F1 Score of 0.94 on the validation set of the 4th COV19D Competition Challenge $\mathrm{I}$, surpassing the baseline by 16%. This indicates its effectiveness in distinguishing between COVID-19 and non-COVID-19 cases, making it a robust method for COVID-19 detection.
Abstract:In response to the need for rapid and accurate COVID-19 diagnosis during the global pandemic, we present a two-stage framework that leverages pseudo labels for domain adaptation to enhance the detection of COVID-19 from CT scans. By utilizing annotated data from one domain and non-annotated data from another, the model overcomes the challenge of data scarcity and variability, common in emergent health crises. The innovative approach of generating pseudo labels enables the model to iteratively refine its learning process, thereby improving its accuracy and adaptability across different hospitals and medical centres. Experimental results on COV19-CT-DB database showcase the model's potential to achieve high diagnostic precision, significantly contributing to efficient patient management and alleviating the strain on healthcare systems. Our method achieves 0.92 Macro F1 Score on the validation set of Covid-19 domain adaptation challenge.
Abstract:Learning medical visual representations through vision-language pre-training has reached remarkable progress. Despite the promising performance, it still faces challenges, i.e., local alignment lacks interpretability and clinical relevance, and the insufficient internal and external representation learning of image-report pairs. To address these issues, we propose an Anatomical Structure-Guided (ASG) framework. Specifically, we parse raw reports into triplets <anatomical region, finding, existence>, and fully utilize each element as supervision to enhance representation learning. For anatomical region, we design an automatic anatomical region-sentence alignment paradigm in collaboration with radiologists, considering them as the minimum semantic units to explore fine-grained local alignment. For finding and existence, we regard them as image tags, applying an image-tag recognition decoder to associate image features with their respective tags within each sample and constructing soft labels for contrastive learning to improve the semantic association of different image-report pairs. We evaluate the proposed ASG framework on two downstream tasks, including five public benchmarks. Experimental results demonstrate that our method outperforms the state-of-the-art methods.
Abstract:Understanding human actions from videos of first-person view poses significant challenges. Most prior approaches explore representation learning on egocentric videos only, while overlooking the potential benefit of exploiting existing large-scale third-person videos. In this paper, (1) we develop EgoInstructor, a retrieval-augmented multimodal captioning model that automatically retrieves semantically relevant third-person instructional videos to enhance the video captioning of egocentric videos. (2) For training the cross-view retrieval module, we devise an automatic pipeline to discover ego-exo video pairs from distinct large-scale egocentric and exocentric datasets. (3) We train the cross-view retrieval module with a novel EgoExoNCE loss that pulls egocentric and exocentric video features closer by aligning them to shared text features that describe similar actions. (4) Through extensive experiments, our cross-view retrieval module demonstrates superior performance across seven benchmarks. Regarding egocentric video captioning, EgoInstructor exhibits significant improvements by leveraging third-person videos as references.
Abstract:With the Generative Pre-trained Transformer 3.5 (GPT-3.5) exhibiting remarkable reasoning and comprehension abilities in Natural Language Processing (NLP), most Question Answering (QA) research has primarily centered around general QA tasks based on GPT, neglecting the specific challenges posed by Complex Table QA. In this paper, we propose to incorporate GPT-3.5 to address such challenges, in which complex tables are reconstructed into tuples and specific prompt designs are employed for dialogues. Specifically, we encode each cell's hierarchical structure, position information, and content as a tuple. By enhancing the prompt template with an explanatory description of the meaning of each tuple and the logical reasoning process of the task, we effectively improve the hierarchical structure awareness capability of GPT-3.5 to better parse the complex tables. Extensive experiments and results on Complex Table QA datasets, i.e., the open-domain dataset HiTAB and the aviation domain dataset AIT-QA show that our approach significantly outperforms previous work on both datasets, leading to state-of-the-art (SOTA) performance.
Abstract:Point clouds have shown significant potential in various domains, including Simultaneous Localization and Mapping (SLAM). However, existing approaches either rely on dense point clouds to achieve high localization accuracy or use generalized descriptors to reduce map size. Unfortunately, these two aspects seem to conflict with each other. To address this limitation, we propose a unified architecture, DeepPointMap, achieving excellent preference on both aspects. We utilize neural network to extract highly representative and sparse neural descriptors from point clouds, enabling memory-efficient map representation and accurate multi-scale localization tasks (e.g., odometry and loop-closure). Moreover, we showcase the versatility of our framework by extending it to more challenging multi-agent collaborative SLAM. The promising results obtained in these scenarios further emphasize the effectiveness and potential of our approach.
Abstract:Automatic generation of radiology reports holds crucial clinical value, as it can alleviate substantial workload on radiologists and remind less experienced ones of potential anomalies. Despite the remarkable performance of various image captioning methods in the natural image field, generating accurate reports for medical images still faces challenges, i.e., disparities in visual and textual data, and lack of accurate domain knowledge. To address these issues, we propose an enhanced knowledge injection framework, which utilizes two branches to extract different types of knowledge. The Weighted Concept Knowledge (WCK) branch is responsible for introducing clinical medical concepts weighted by TF-IDF scores. The Multimodal Retrieval Knowledge (MRK) branch extracts triplets from similar reports, emphasizing crucial clinical information related to entity positions and existence. By integrating this finer-grained and well-structured knowledge with the current image, we are able to leverage the multi-source knowledge gain to ultimately facilitate more accurate report generation. Extensive experiments have been conducted on two public benchmarks, demonstrating that our method achieves superior performance over other state-of-the-art methods. Ablation studies further validate the effectiveness of two extracted knowledge sources.
Abstract:In this paper, we introduce the Recognize Anything Plus Model~(RAM++), a fundamental image recognition model with strong open-set recognition capabilities, by injecting semantic concepts into image tagging training framework. Previous approaches are either image tagging models constrained by limited semantics, or vision-language models with shallow interaction for suboptimal performance in multi-tag recognition. In contrast, RAM++ integrates image-text alignment and image-tagging within a unified fine-grained interaction framework based on image-tags-text triplets. This design enables RAM++ not only excel in identifying predefined categories, but also significantly augment the recognition ability in open-set categories. Moreover, RAM++ employs large language models~(LLMs) to generate diverse visual tag descriptions, pioneering the integration of LLM's knowledge into image tagging training. This approach empowers RAM++ to integrate visual description concepts for open-set recognition during inference. Evaluations on comprehensive image recognition benchmarks demonstrate RAM++ exceeds existing state-of-the-art (SOTA) fundamental image recognition models on most aspects. Specifically, for predefined common-used tag categories, RAM++ showcases 10.2 mAP and 15.4 mAP enhancements over CLIP on OpenImages and ImageNet. For open-set categories beyond predefined, RAM++ records improvements of 5 mAP and 6.4 mAP over CLIP and RAM respectively on OpenImages. For diverse human-object interaction phrases, RAM++ achieves 7.8 mAP and 4.7 mAP improvements on the HICO benchmark. Code, datasets and pre-trained models are available at \url{https://github.com/xinyu1205/recognize-anything}.