Abstract:To make a more accurate diagnosis of COVID-19, we propose a straightforward yet effective model. Firstly, we analyse the characteristics of 3D CT scans and remove the non-lung parts, facilitating the model to focus on lesion-related areas and reducing computational cost. We use ResNeSt50 as the strong feature extractor, initializing it with pretrained weights which have COVID-19-specific prior knowledge. Our model achieves a Macro F1 Score of 0.94 on the validation set of the 4th COV19D Competition Challenge $\mathrm{I}$, surpassing the baseline by 16%. This indicates its effectiveness in distinguishing between COVID-19 and non-COVID-19 cases, making it a robust method for COVID-19 detection.
Abstract:In response to the need for rapid and accurate COVID-19 diagnosis during the global pandemic, we present a two-stage framework that leverages pseudo labels for domain adaptation to enhance the detection of COVID-19 from CT scans. By utilizing annotated data from one domain and non-annotated data from another, the model overcomes the challenge of data scarcity and variability, common in emergent health crises. The innovative approach of generating pseudo labels enables the model to iteratively refine its learning process, thereby improving its accuracy and adaptability across different hospitals and medical centres. Experimental results on COV19-CT-DB database showcase the model's potential to achieve high diagnostic precision, significantly contributing to efficient patient management and alleviating the strain on healthcare systems. Our method achieves 0.92 Macro F1 Score on the validation set of Covid-19 domain adaptation challenge.
Abstract:Learning medical visual representations through vision-language pre-training has reached remarkable progress. Despite the promising performance, it still faces challenges, i.e., local alignment lacks interpretability and clinical relevance, and the insufficient internal and external representation learning of image-report pairs. To address these issues, we propose an Anatomical Structure-Guided (ASG) framework. Specifically, we parse raw reports into triplets <anatomical region, finding, existence>, and fully utilize each element as supervision to enhance representation learning. For anatomical region, we design an automatic anatomical region-sentence alignment paradigm in collaboration with radiologists, considering them as the minimum semantic units to explore fine-grained local alignment. For finding and existence, we regard them as image tags, applying an image-tag recognition decoder to associate image features with their respective tags within each sample and constructing soft labels for contrastive learning to improve the semantic association of different image-report pairs. We evaluate the proposed ASG framework on two downstream tasks, including five public benchmarks. Experimental results demonstrate that our method outperforms the state-of-the-art methods.
Abstract:Automatic generation of radiology reports holds crucial clinical value, as it can alleviate substantial workload on radiologists and remind less experienced ones of potential anomalies. Despite the remarkable performance of various image captioning methods in the natural image field, generating accurate reports for medical images still faces challenges, i.e., disparities in visual and textual data, and lack of accurate domain knowledge. To address these issues, we propose an enhanced knowledge injection framework, which utilizes two branches to extract different types of knowledge. The Weighted Concept Knowledge (WCK) branch is responsible for introducing clinical medical concepts weighted by TF-IDF scores. The Multimodal Retrieval Knowledge (MRK) branch extracts triplets from similar reports, emphasizing crucial clinical information related to entity positions and existence. By integrating this finer-grained and well-structured knowledge with the current image, we are able to leverage the multi-source knowledge gain to ultimately facilitate more accurate report generation. Extensive experiments have been conducted on two public benchmarks, demonstrating that our method achieves superior performance over other state-of-the-art methods. Ablation studies further validate the effectiveness of two extracted knowledge sources.