Abstract:In most applications, robots need to adapt to new environments and be multi-functional without forgetting previous information. This requirement gains further importance in real-world scenarios where robots operate in coexistence with humans. In these complex environments, human actions inevitably lead to changes, requiring robots to adapt accordingly. To effectively address these dynamics, the concept of continual learning proves essential. It not only enables learning models to integrate new knowledge while preserving existing information but also facilitates the acquisition of insights from diverse contexts. This aspect is particularly relevant to the issue of context-switching, where robots must navigate and adapt to changing situational dynamics. Our approach introduces a novel approach to effectively tackle the problem of context drifts by designing a Streaming Graph Neural Network that incorporates both regularization and rehearsal techniques. Our Continual\_GTM model enables us to retain previous knowledge from different contexts, and it is more effective than traditional fine-tuning approaches. We evaluated the efficacy of Continual\_GTM in predicting human routines within household environments, leveraging spatio-temporal object dynamics across diverse scenarios.
Abstract:Ambiguities are common in human-robot interaction, especially when a robot follows user instructions in a large collocated space. For instance, when the user asks the robot to find an object in a home environment, the object might be in several places depending on its varying semantic properties (e.g., a bowl can be in the kitchen cabinet or on the dining room table, depending on whether it is clean/dirty, full/empty and the other objects around it). Previous works on object semantics have predicted such relationships using one shot-inferences which are likely to fail for ambiguous or partially understood instructions. This paper focuses on this gap and suggests a semantically-driven disambiguation approach by utilizing follow-up clarifications to handle such uncertainties. To achieve this, we first obtain semantic knowledge embeddings, and then these embeddings are used to generate clarifying questions by following an iterative process. The evaluation of our method shows that our approach is model agnostic, i.e., applicable to different semantic embedding models, and follow-up clarifications improve the performance regardless of the embedding model. Additionally, our ablation studies show the significance of informative clarifications and iterative predictions to enhance system accuracies.
Abstract:The workshop is affiliated with 33nd IEEE International Conference on Robot and Human Interactive Communication (RO-MAN 2024) August 26~30, 2023 / Pasadena, CA, USA. It is designed as a half-day event, extending over four hours from 9:00 to 12:30 PST time. It accommodates both in-person and virtual attendees (via Zoom), ensuring a flexible participation mode. The agenda is thoughtfully crafted to include a diverse range of sessions: two keynote speeches that promise to provide insightful perspectives, two dedicated paper presentation sessions, an interactive panel discussion to foster dialogue among experts which facilitates deeper dives into specific topics, and a 15-minute coffee break. The workshop website: https://sites.google.com/view/interaiworkshops/home.
Abstract:Preference-based reinforcement learning (RL) has emerged as a new field in robot learning, where humans play a pivotal role in shaping robot behavior by expressing preferences on different sequences of state-action pairs. However, formulating realistic policies for robots demands responses from humans to an extensive array of queries. In this work, we approach the sample-efficiency challenge by expanding the information collected per query to contain both preferences and optional text prompting. To accomplish this, we leverage the zero-shot capabilities of a large language model (LLM) to reason from the text provided by humans. To accommodate the additional query information, we reformulate the reward learning objectives to contain flexible highlights -- state-action pairs that contain relatively high information and are related to the features processed in a zero-shot fashion from a pretrained LLM. In both a simulated scenario and a user study, we reveal the effectiveness of our work by analyzing the feedback and its implications. Additionally, the collective feedback collected serves to train a robot on socially compliant trajectories in a simulated social navigation landscape. We provide video examples of the trained policies at https://sites.google.com/view/rl-predilect
Abstract:Despite significant improvements in robot capabilities, they are likely to fail in human-robot collaborative tasks due to high unpredictability in human environments and varying human expectations. In this work, we explore the role of explanation of failures by a robot in a human-robot collaborative task. We present a user study incorporating common failures in collaborative tasks with human assistance to resolve the failure. In the study, a robot and a human work together to fill a shelf with objects. Upon encountering a failure, the robot explains the failure and the resolution to overcome the failure, either through handovers or humans completing the task. The study is conducted using different levels of robotic explanation based on the failure action, failure cause, and action history, and different strategies in providing the explanation over the course of repeated interaction. Our results show that the success in resolving the failures is not only a function of the level of explanation but also the type of failures. Furthermore, while novice users rate the robot higher overall in terms of their satisfaction with the explanation, their satisfaction is not only a function of the robot's explanation level at a certain round but also the prior information they received from the robot.
Abstract:Research reproducibility - i.e., rerunning analyses on original data to replicate the results - is paramount for guaranteeing scientific validity. However, reproducibility is often very challenging, especially in research fields where multi-disciplinary teams are involved, such as child-robot interaction (CRI). This paper presents a systematic review of the last three years (2020-2022) of research in CRI under the lens of reproducibility, by analysing the field for transparency in reporting. Across a total of 325 studies, we found deficiencies in reporting demographics (e.g. age of participants), study design and implementation (e.g. length of interactions), and open data (e.g. maintaining an active code repository). From this analysis, we distill a set of guidelines and provide a checklist to systematically report CRI studies to help and guide research to improve reproducibility in CRI and beyond.
Abstract:Despite great advances in what robots can do, they still experience failures in human-robot collaborative tasks due to high randomness in unstructured human environments. Moreover, a human's unfamiliarity with a robot and its abilities can cause such failures to repeat. This makes the ability to failure explanation very important for a robot. In this work, we describe a user study that incorporated different robotic failures in a human-robot collaboration (HRC) task aimed at filling a shelf. We included different types of failures and repeated occurrences of such failures in a prolonged interaction between humans and robots. The failure resolution involved human intervention in form of human-robot bidirectional handovers. Through such studies, we aim to test different explanation types and explanation progression in the interaction and record humans.
Abstract:While thinking aloud has been reported to positively affect problem-solving, the effects of the presence of an embodied entity (e.g., a social robot) to whom words can be directed remain mostly unexplored. In this work, we investigated the role of a robot in a "rubber duck debugging" setting, by analyzing how a robot's listening behaviors could support a thinking-aloud problem-solving session. Participants completed two different tasks while speaking their thoughts aloud to either a robot or an inanimate object (a giant rubber duck). We implemented and tested two types of listener behavior in the robot: a rule-based heuristic and a deep-learning-based model. In a between-subject user study with 101 participants, we evaluated how the presence of a robot affected users' engagement in thinking aloud, behavior during the task, and self-reported user experience. In addition, we explored the impact of the two robot listening behaviors on those measures. In contrast to prior work, our results indicate that neither the rule-based heuristic nor the deep learning robot conditions improved performance or perception of the task, compared to an inanimate object. We discuss potential explanations and shed light on the feasibility of designing social robots as assistive tools in thinking-aloud problem-solving tasks.
Abstract:In recent years, robots are used in an increasing variety of tasks, especially by small- and medium- sized enterprises. These tasks are usually fast-changing, they have a collaborative scenario and happen in unpredictable environments with possible ambiguities. It is important to have methods capable of generating robot programs easily, that are made as general as possible by handling uncertainties. We present a system that integrates a method to learn Behavior Trees (BTs) from demonstration for pick and place tasks, with a framework that uses verbal interaction to ask follow-up clarification questions to resolve ambiguities. During the execution of a task, the system asks for user input when there is need to disambiguate an object in the scene, when the targets of the task are objects of a same type that are present in multiple instances. The integrated system is demonstrated on different scenarios of a pick and place task, with increasing level of ambiguities. The code used for this paper is made publicly available.
Abstract:In this paper we present a pilot study which investigates how non-verbal behavior affects social influence in social robots. We also present a modular system which is capable of controlling the non-verbal behavior based on the interlocutor's facial gestures (head movements and facial expressions) in real time, and a study investigating whether three different strategies for facial gestures ("still", "natural movement", i.e. movements recorded from another conversation, and "copy", i.e. mimicking the user with a four second delay) has any affect on social influence and decision making in a "survival task". Our preliminary results show there was no significant difference between the three conditions, but this might be due to among other things a low number of study participants (12).