Abstract:Despite significant improvements in robot capabilities, they are likely to fail in human-robot collaborative tasks due to high unpredictability in human environments and varying human expectations. In this work, we explore the role of explanation of failures by a robot in a human-robot collaborative task. We present a user study incorporating common failures in collaborative tasks with human assistance to resolve the failure. In the study, a robot and a human work together to fill a shelf with objects. Upon encountering a failure, the robot explains the failure and the resolution to overcome the failure, either through handovers or humans completing the task. The study is conducted using different levels of robotic explanation based on the failure action, failure cause, and action history, and different strategies in providing the explanation over the course of repeated interaction. Our results show that the success in resolving the failures is not only a function of the level of explanation but also the type of failures. Furthermore, while novice users rate the robot higher overall in terms of their satisfaction with the explanation, their satisfaction is not only a function of the robot's explanation level at a certain round but also the prior information they received from the robot.
Abstract:Handovers are basic yet sophisticated motor tasks performed seamlessly by humans. They are among the most common activities in our daily lives and social environments. This makes mastering the art of handovers critical for a social and collaborative robot. In this work, we present an experimental study that involved human-human handovers by 13 pairs, i.e., 26 participants. We record and explore multiple features of handovers amongst humans aimed at inspiring handovers amongst humans and robots. With this work, we further create and publish a novel data set of 8672 handovers, bringing together human motion and the forces involved. We further analyze the effect of object weight and the role of visual sensory input in human-human handovers, as well as possible design implications for robots. As a proof of concept, the data set was used for creating a human-inspired data-driven strategy for robotic grip release in handovers, which was demonstrated to result in better robot to human handovers.
Abstract:Despite great advances in what robots can do, they still experience failures in human-robot collaborative tasks due to high randomness in unstructured human environments. Moreover, a human's unfamiliarity with a robot and its abilities can cause such failures to repeat. This makes the ability to failure explanation very important for a robot. In this work, we describe a user study that incorporated different robotic failures in a human-robot collaboration (HRC) task aimed at filling a shelf. We included different types of failures and repeated occurrences of such failures in a prolonged interaction between humans and robots. The failure resolution involved human intervention in form of human-robot bidirectional handovers. Through such studies, we aim to test different explanation types and explanation progression in the interaction and record humans.
Abstract:Handovers frequently occur in our social environments, making it imperative for a collaborative robotic system to master the skill of handover. In this work, we aim to investigate the relationship between the grip force variation for a human giver and the sensed interaction force-torque in human-human handovers, utilizing a data-driven approach. A Long-Short Term Memory (LSTM) network was trained to use the interaction force-torque in a handover to predict the human grip force variation in advance. Further, we propose to utilize the trained network to cause human-like grip force variation for a robotic giver.