Abstract:Human-robot collaboration (HRC) relies on accurate and timely recognition of human intentions to ensure seamless interactions. Among common HRC tasks, human-to-robot object handovers have been studied extensively for planning the robot's actions during object reception, assuming the human intention for object handover. However, distinguishing handover intentions from other actions has received limited attention. Most research on handovers has focused on visually detecting motion trajectories, which often results in delays or false detections when trajectories overlap. This paper investigates whether human intentions for object handovers are reflected in non-movement-based physiological signals. We conduct a multimodal analysis comparing three data modalities: electroencephalogram (EEG), gaze, and hand-motion signals. Our study aims to distinguish between handover-intended human motions and non-handover motions in an HRC setting, evaluating each modality's performance in predicting and classifying these actions before and after human movement initiation. We develop and evaluate human intention detectors based on these modalities, comparing their accuracy and timing in identifying handover intentions. To the best of our knowledge, this is the first study to systematically develop and test intention detectors across multiple modalities within the same experimental context of human-robot handovers. Our analysis reveals that handover intention can be detected from all three modalities. Nevertheless, gaze signals are the earliest as well as the most accurate to classify the motion as intended for handover or non-handover.
Abstract:Decoding visual images from brain activity has significant potential for advancing brain-computer interaction and enhancing the understanding of human perception. Recent approaches align the representation spaces of images and brain activity to enable visual decoding. In this paper, we introduce the use of human-aligned image encoders to map brain signals to images. We hypothesize that these models more effectively capture perceptual attributes associated with the rapid visual stimuli presentations commonly used in visual brain data recording experiments. Our empirical results support this hypothesis, demonstrating that this simple modification improves image retrieval accuracy by up to 21% compared to state-of-the-art methods. Comprehensive experiments confirm consistent performance improvements across diverse EEG architectures, image encoders, alignment methods, participants, and brain imaging modalities.
Abstract:To facilitate human-robot interaction and gain human trust, a robot should recognize and adapt to changes in human behavior. This work documents different human behaviors observed while taking objects from an interactive robot in an experimental study, categorized across two dimensions: pull force applied and handedness. We also present the changes observed in human behavior upon repeated interaction with the robot to take various objects.
Abstract:We introduce Cloth-Splatting, a method for estimating 3D states of cloth from RGB images through a prediction-update framework. Cloth-Splatting leverages an action-conditioned dynamics model for predicting future states and uses 3D Gaussian Splatting to update the predicted states. Our key insight is that coupling a 3D mesh-based representation with Gaussian Splatting allows us to define a differentiable map between the cloth state space and the image space. This enables the use of gradient-based optimization techniques to refine inaccurate state estimates using only RGB supervision. Our experiments demonstrate that Cloth-Splatting not only improves state estimation accuracy over current baselines but also reduces convergence time.
Abstract:The human brain encodes stimuli from the environment into representations that form a sensory perception of the world. Despite recent advances in understanding visual and auditory perception, olfactory perception remains an under-explored topic in the machine learning community due to the lack of large-scale datasets annotated with labels of human olfactory perception. In this work, we ask the question of whether pre-trained transformer models of chemical structures encode representations that are aligned with human olfactory perception, i.e., can transformers smell like humans? We demonstrate that representations encoded from transformers pre-trained on general chemical structures are highly aligned with human olfactory perception. We use multiple datasets and different types of perceptual representations to show that the representations encoded by transformer models are able to predict: (i) labels associated with odorants provided by experts; (ii) continuous ratings provided by human participants with respect to pre-defined descriptors; and (iii) similarity ratings between odorants provided by human participants. Finally, we evaluate the extent to which this alignment is associated with physicochemical features of odorants known to be relevant for olfactory decoding.
Abstract:Given a finite set of sample points, meta-learning algorithms aim to learn an optimal adaptation strategy for new, unseen tasks. Often, this data can be ambiguous as it might belong to different tasks concurrently. This is particularly the case in meta-regression tasks. In such cases, the estimated adaptation strategy is subject to high variance due to the limited amount of support data for each task, which often leads to sub-optimal generalization performance. In this work, we address the problem of variance reduction in gradient-based meta-learning and formalize the class of problems prone to this, a condition we refer to as \emph{task overlap}. Specifically, we propose a novel approach that reduces the variance of the gradient estimate by weighing each support point individually by the variance of its posterior over the parameters. To estimate the posterior, we utilize the Laplace approximation, which allows us to express the variance in terms of the curvature of the loss landscape of our meta-learner. Experimental results demonstrate the effectiveness of the proposed method and highlight the importance of variance reduction in meta-learning.
Abstract:This paper is about effectively utilizing synthetic data for training deep neural networks for industrial parts classification, in particular, by taking into account the domain gap against real-world images. To this end, we introduce a synthetic dataset that may serve as a preliminary testbed for the Sim-to-Real challenge; it contains 17 objects of six industrial use cases, including isolated and assembled parts. A few subsets of objects exhibit large similarities in shape and albedo for reflecting challenging cases of industrial parts. All the sample images come with and without random backgrounds and post-processing for evaluating the importance of domain randomization. We call it Synthetic Industrial Parts dataset (SIP-17). We study the usefulness of SIP-17 through benchmarking the performance of five state-of-the-art deep network models, supervised and self-supervised, trained only on the synthetic data while testing them on real data. By analyzing the results, we deduce some insights on the feasibility and challenges of using synthetic data for industrial parts classification and for further developing larger-scale synthetic datasets. Our dataset and code are publicly available.
Abstract:This paper presents findings from an exploratory needfinding study investigating the research current status and potential participation of the competitions on the robotics community towards four human-centric topics: safety, privacy, explainability, and federated learning. We conducted a survey with 34 participants across three distinguished European robotics consortia, nearly 60% of whom possessed over five years of research experience in robotics. Our qualitative and quantitative analysis revealed that current mainstream robotic researchers prioritize safety and explainability, expressing a greater willingness to invest in further research in these areas. Conversely, our results indicate that privacy and federated learning garner less attention and are perceived to have lower potential. Additionally, the study suggests a lack of enthusiasm within the robotics community for participating in competitions related to these topics. Based on these findings, we recommend targeting other communities, such as the machine learning community, for future competitions related to these four human-centric topics.
Abstract:Dance typically involves professional choreography with complex movements that follow a musical rhythm and can also be influenced by lyrical content. The integration of lyrics in addition to the auditory dimension, enriches the foundational tone and makes motion generation more amenable to its semantic meanings. However, existing dance synthesis methods tend to model motions only conditioned on audio signals. In this work, we make two contributions to bridge this gap. First, we propose LM2D, a novel probabilistic architecture that incorporates a multimodal diffusion model with consistency distillation, designed to create dance conditioned on both music and lyrics in one diffusion generation step. Second, we introduce the first 3D dance-motion dataset that encompasses both music and lyrics, obtained with pose estimation technologies. We evaluate our model against music-only baseline models with objective metrics and human evaluations, including dancers and choreographers. The results demonstrate LM2D is able to produce realistic and diverse dance matching both lyrics and music. A video summary can be accessed at: https://youtu.be/4XCgvYookvA.
Abstract:Brain-robot interaction (BRI) empowers individuals to control (semi-)automated machines through their brain activity, either passively or actively. In the past decade, BRI systems have achieved remarkable success, predominantly harnessing electroencephalogram (EEG) signals as the central component. This paper offers an up-to-date and exhaustive examination of 87 curated studies published during the last five years (2018-2023), focusing on identifying the research landscape of EEG-based BRI systems. This review aims to consolidate and underscore methodologies, interaction modes, application contexts, system evaluation, existing challenges, and potential avenues for future investigations in this domain. Based on our analysis, we present a BRI system model with three entities: Brain, Robot, and Interaction, depicting the internal relationships of a BRI system. We especially investigate the essence and principles on interaction modes between human brains and robots, a domain that has not yet been identified anywhere. We then discuss these entities with different dimensions encompassed. Within this model, we scrutinize and classify current research, reveal insights, specify challenges, and provide recommendations for future research trajectories in this field. Meanwhile, we envision our findings offer a design space for future human-robot interaction (HRI) research, informing the creation of efficient BRI frameworks.