Abstract:We introduce a novel approach for monocular novel view synthesis of dynamic scenes. Existing techniques already show impressive rendering quality but tend to focus on optimization within a single scene without leveraging prior knowledge. This limitation has been primarily attributed to the lack of datasets of dynamic scenes available for training and the diversity of scene dynamics. Our method FlowIBR circumvents these issues by integrating a neural image-based rendering method, pre-trained on a large corpus of widely available static scenes, with a per-scene optimized scene flow field. Utilizing this flow field, we bend the camera rays to counteract the scene dynamics, thereby presenting the dynamic scene as if it were static to the rendering network. The proposed method reduces per-scene optimization time by an order of magnitude, achieving comparable results to existing methods - all on a single consumer-grade GPU.
Abstract:We present a generalizable novel view synthesis method where it is possible to modify the visual appearance of rendered views to match a target weather or lighting condition. Our method is based on a generalizable transformer architecture, trained on synthetically generated scenes under different appearance conditions. This allows for rendering novel views in a consistent manner of 3D scenes that were not included in the training set, along with the ability to (i) modify their appearance to match the target condition and (ii) smoothly interpolate between different conditions. Experiments on both real and synthetic scenes are provided including both qualitative and quantitative evaluations. Please refer to our project page for video results: https://ava-nvs.github.io/