Modern embodied artificial agents excel in static, predefined tasks but fall short in dynamic and long-term interactions with humans. On the other hand, humans can adapt and evolve continuously, exploiting the situated knowledge embedded in their environment and other agents, thus contributing to meaningful interactions. We introduce the concept of co-existence for embodied artificial agents and argues that it is a prerequisite for meaningful, long-term interaction with humans. We take inspiration from biology and design theory to understand how human and non-human organisms foster entities that co-exist within their specific niches. Finally, we propose key research directions for the machine learning community to foster co-existing embodied agents, focusing on the principles, hardware and learning methods responsible for shaping them.