Abstract:Transformer-based Large Language Models (LLMs) have exhibited remarkable success in various natural language processing tasks primarily attributed to self-attention mechanism, which requires a token to consider all preceding tokens as its context to compute the attention score. However, when the context length L becomes very large (e.g., 32K), more redundant context information will be included w.r.t. any tokens, making the self-attention suffer from two main limitations: 1) The computational and memory complexity scales quadratically w.r.t. L; 2) The presence of redundant context information may hamper the model to capture dependencies among crucial tokens, which may degrade the representation performance. In this paper, we propose a plug-and-play Core Context Aware (CCA) Attention for efficient long-range context modeling, which consists of two components: 1) Globality-pooling attention that divides input tokens into groups and then dynamically merges tokens within each group into one core token based on their significance; 2) Locality-preserved attention that incorporates neighboring tokens into the attention calculation. The two complementary attentions will then be fused to the final attention, maintaining comprehensive modeling ability as the full self-attention. In this way, the core context information w.r.t. a given token will be automatically focused and strengthened, while the context information in redundant groups will be diminished during the learning process. As a result, the computational and memory complexity will be significantly reduced. More importantly, the CCA-Attention can improve the long-context modeling ability by diminishing the redundant context information. Extensive experimental results demonstrate that our CCA-Attention significantly outperforms state-of-the-art models in terms of computational efficiency and long-context modeling ability.
Abstract:End-to-end autonomous driving has witnessed remarkable progress. However, the extensive deployment of autonomous vehicles has yet to be realized, primarily due to 1) inefficient multi-modal environment perception: how to integrate data from multi-modal sensors more efficiently; 2) non-human-like scene understanding: how to effectively locate and predict critical risky agents in traffic scenarios like an experienced driver. To overcome these challenges, in this paper, we propose a Multi-Modal fusion transformer incorporating Driver Attention (M2DA) for autonomous driving. To better fuse multi-modal data and achieve higher alignment between different modalities, a novel Lidar-Vision-Attention-based Fusion (LVAFusion) module is proposed. By incorporating driver attention, we empower the human-like scene understanding ability to autonomous vehicles to identify crucial areas within complex scenarios precisely and ensure safety. We conduct experiments on the CARLA simulator and achieve state-of-the-art performance with less data in closed-loop benchmarks. Source codes are available at https://anonymous.4open.science/r/M2DA-4772.
Abstract:Conventional deep models predict a test sample with a single forward propagation, which, however, may not be sufficient for predicting hard-classified samples. On the contrary, we human beings may need to carefully check the sample many times before making a final decision. During the recheck process, one may refine/adjust the prediction by referring to related samples. Motivated by this, we propose to predict those hard-classified test samples in a looped manner to boost the model performance. However, this idea may pose a critical challenge: how to construct looped inference, so that the original erroneous predictions on these hard test samples can be corrected with little additional effort. To address this, we propose a general Closed-Loop Inference (CLI) method. Specifically, we first devise a filtering criterion to identify those hard-classified test samples that need additional inference loops. For each hard sample, we construct an additional auxiliary learning task based on its original top-$K$ predictions to calibrate the model, and then use the calibrated model to obtain the final prediction. Promising results on ImageNet (in-distribution test samples) and ImageNet-C (out-of-distribution test samples) demonstrate the effectiveness of CLI in improving the performance of any pre-trained model.
Abstract:Neural network quantization is an effective way to compress deep models and improve the execution latency and energy efficiency, so that they can be deployed on mobile or embedded devices. Existing quantization methods require original data for calibration or fine-tuning to get better performance. However, in many real-world scenarios, the data may not be available due to confidential or private issues, making existing quantization methods not applicable. Moreover, due to the absence of original data, the recently developed generative adversarial networks (GANs) can not be applied to generate data. Although the full precision model may contain the entire data information, such information alone is hard to exploit for recovering the original data or generating new meaningful data. In this paper, we investigate a simple-yet-effective method called Generative Low-bitwidth Data Free Quantization to remove the data dependence burden. Specifically, we propose a Knowledge Matching Generator to produce meaningful fake data by exploiting classification boundary knowledge and distribution information in the pre-trained model. With the help of generated data, we are able to quantize a model by learning knowledge from the pre-trained model. Extensive experiments on three data sets demonstrate the effectiveness of our method. More critically, our method achieves much higher accuracy on 4-bit quantization than the existing data free quantization method.
Abstract:A new algorithm for deciding the satisfiability of polynomial formulas over the reals is proposed. The key point of the algorithm is a new projection operator, called sample-cell projection operator, custom-made for Conflict-Driven Clause Learning (CDCL)-style search. Although the new operator is also a CAD (Cylindrical Algebraic Decomposition)-like projection operator which computes the cell (not necessarily cylindrical) containing a given sample such that each polynomial from the problem is sign-invariant on the cell, it is of singly exponential time complexity. The sample-cell projection operator can efficiently guide CDCL-style search away from conflicting states. Experiments show the effectiveness of the new algorithm.