Abstract:Depth estimation is a core problem in robotic perception and vision tasks, but 3D reconstruction from a single image presents inherent uncertainties. Current depth estimation models primarily rely on inter-image relationships for supervised training, often overlooking the intrinsic information provided by the camera itself. We propose a method that embodies the camera model and its physical characteristics into a deep learning model, computing embodied scene depth through real-time interactions with road environments. The model can calculate embodied scene depth in real-time based on immediate environmental changes using only the intrinsic properties of the camera, without any additional equipment. By combining embodied scene depth with RGB image features, the model gains a comprehensive perspective on both geometric and visual details. Additionally, we incorporate text descriptions containing environmental content and depth information as priors for scene understanding, enriching the model's perception of objects. This integration of image and language - two inherently ambiguous modalities - leverages their complementary strengths for monocular depth estimation. The real-time nature of the embodied language and depth prior model ensures that the model can continuously adjust its perception and behavior in dynamic environments. Experimental results show that the embodied depth estimation method enhances model performance across different scenes.
Abstract:Depth-guided multimodal fusion combines depth information from visible and infrared images, significantly enhancing the performance of 3D reconstruction and robotics applications. Existing thermal-visible image fusion mainly focuses on detection tasks, ignoring other critical information such as depth. By addressing the limitations of single modalities in low-light and complex environments, the depth information from fused images not only generates more accurate point cloud data, improving the completeness and precision of 3D reconstruction, but also provides comprehensive scene understanding for robot navigation, localization, and environmental perception. This supports precise recognition and efficient operations in applications such as autonomous driving and rescue missions. We introduce a text-guided and depth-driven infrared and visible image fusion network. The model consists of an image fusion branch for extracting multi-channel complementary information through a diffusion model, equipped with a text-guided module, and two auxiliary depth estimation branches. The fusion branch uses CLIP to extract semantic information and parameters from depth-enriched image descriptions to guide the diffusion model in extracting multi-channel features and generating fused images. These fused images are then input into the depth estimation branches to calculate depth-driven loss, optimizing the image fusion network. This framework aims to integrate vision-language and depth to directly generate color-fused images from multimodal inputs.
Abstract:Keypoint detection and local feature description are fundamental tasks in robotic perception, critical for applications such as SLAM, robot localization, feature matching, pose estimation, and 3D mapping. While existing methods predominantly operate on RGB images, we propose a novel network that directly processes raw images, bypassing the need for the Image Signal Processor (ISP). This approach significantly reduces hardware requirements and memory consumption, which is crucial for robotic vision systems. Our method introduces two custom-designed convolutional kernels capable of performing convolutions directly on raw images, preserving inter-channel information without converting to RGB. Experimental results show that our network outperforms existing algorithms on raw images, achieving higher accuracy and stability under large rotations and scale variations. This work represents the first attempt to develop a keypoint detection and feature description network specifically for raw images, offering a more efficient solution for resource-constrained environments.
Abstract:This comprehensive study evaluates the performance of OpenAI's o1-preview large language model across a diverse array of complex reasoning tasks, spanning multiple domains, including computer science, mathematics, natural sciences, medicine, linguistics, and social sciences. Through rigorous testing, o1-preview demonstrated remarkable capabilities, often achieving human-level or superior performance in areas ranging from coding challenges to scientific reasoning and from language processing to creative problem-solving. Key findings include: -83.3% success rate in solving complex competitive programming problems, surpassing many human experts. -Superior ability in generating coherent and accurate radiology reports, outperforming other evaluated models. -100% accuracy in high school-level mathematical reasoning tasks, providing detailed step-by-step solutions. -Advanced natural language inference capabilities across general and specialized domains like medicine. -Impressive performance in chip design tasks, outperforming specialized models in areas such as EDA script generation and bug analysis. -Remarkable proficiency in anthropology and geology, demonstrating deep understanding and reasoning in these specialized fields. -Strong capabilities in quantitative investing. O1 has comprehensive financial knowledge and statistical modeling skills. -Effective performance in social media analysis, including sentiment analysis and emotion recognition. The model excelled particularly in tasks requiring intricate reasoning and knowledge integration across various fields. While some limitations were observed, including occasional errors on simpler problems and challenges with certain highly specialized concepts, the overall results indicate significant progress towards artificial general intelligence.
Abstract:3D object reconstruction based on deep neural networks has gained increasing attention in recent years. However, 3D reconstruction of underground objects to generate point cloud maps remains a challenge. Ground Penetrating Radar (GPR) is one of the most powerful and extensively used tools for detecting and locating underground objects such as plant root systems and pipelines, with its cost-effectiveness and continuously evolving technology. This paper introduces a parabolic signal detection network based on deep convolutional neural networks, utilizing B-scan images from GPR sensors. The detected keypoints can aid in accurately fitting parabolic curves used to interpret the original GPR B-scan images as cross-sections of the object model. Additionally, a multi-task point cloud network was designed to perform both point cloud segmentation and completion simultaneously, filling in sparse point cloud maps. For unknown locations, GPR A-scan data can be used to match corresponding A-scan data in the constructed map, pinpointing the position to verify the accuracy of the map construction by the model. Experimental results demonstrate the effectiveness of our method.
Abstract:Depth estimationn is a critical topic for robotics and vision-related tasks. In monocular depth estimation, in comparison with supervised learning that requires expensive ground truth labeling, self-supervised methods possess great potential due to no labeling cost. However, self-supervised learning still has a large gap with supervised learning in depth estimation performance. Meanwhile, scaling is also a major issue for monocular unsupervised depth estimation, which commonly still needs ground truth scale from GPS, LiDAR, or existing maps to correct. In deep learning era, while existing methods mainly rely on the exploration of image relationships to train the unsupervised neural networks, fundamental information provided by the camera itself has been generally ignored, which can provide extensive supervision information for free, without the need for any extra equipment to provide supervision signals. Utilizing the camera itself's intrinsics and extrinsics, depth information can be calculated for ground regions and regions connecting ground based on physical principles, providing free supervision information without any other sensors. The method is easy to realize and can be a component to enhance the effects of all the unsupervised methods.
Abstract:Intracerebral hemorrhage (ICH) is a severe and sudden medical condition caused by the rupture of blood vessels in the brain, leading to permanent damage to brain tissue and often resulting in functional disabilities or death in patients. Diagnosis and analysis of ICH typically rely on brain CT imaging. Given the urgency of ICH conditions, early treatment is crucial, necessitating rapid analysis of CT images to formulate tailored treatment plans. However, the complexity of ICH CT images and the frequent scarcity of specialist radiologists pose significant challenges. Therefore, we built a dataset for ICH and normal classification and three types of ICH image classification based on the hemorrhage location, i.e., Deep, Subcortical, and Lobar. In addition, we propose a dual-task vision transformer (DTViT) for the automated classification and diagnosis of ICH images. This neural network utilizes the encoder from ViT, employing attention mechanisms for feature extraction from CT images. We incorporated two multilayer perception (MLP)-based decoders within the network to simultaneously identify the presence of ICH and classify three types of hemorrhage locations. Experimental results demonstrate that our proposed multi-classification network performs well on the built real-world test dataset. The code and dataset for this study will be made publicly available upon paper acceptance at: https://github.com/Jialiangfan/ICH-classification.
Abstract:Large language models and multimodal large language models have revolutionized artificial intelligence recently. An increasing number of regions are now embracing these advanced technologies. Within this context, robot coding education is garnering increasing attention. To teach young children how to code and compete in robot challenges, large language models are being utilized for robot code explanation, generation, and modification. In this paper, we highlight an important trend in robot coding education. We test several mainstream large language models on both traditional coding tasks and the more challenging task of robot code generation, which includes block diagrams. Our results show that GPT-4V outperforms other models in all of our tests but struggles with generating block diagram images.
Abstract:Artificial General Intelligence (AGI), possessing the capacity to comprehend, learn, and execute tasks with human cognitive abilities, engenders significant anticipation and intrigue across scientific, commercial, and societal arenas. This fascination extends particularly to the Internet of Things (IoT), a landscape characterized by the interconnection of countless devices, sensors, and systems, collectively gathering and sharing data to enable intelligent decision-making and automation. This research embarks on an exploration of the opportunities and challenges towards achieving AGI in the context of the IoT. Specifically, it starts by outlining the fundamental principles of IoT and the critical role of Artificial Intelligence (AI) in IoT systems. Subsequently, it delves into AGI fundamentals, culminating in the formulation of a conceptual framework for AGI's seamless integration within IoT. The application spectrum for AGI-infused IoT is broad, encompassing domains ranging from smart grids, residential environments, manufacturing, and transportation to environmental monitoring, agriculture, healthcare, and education. However, adapting AGI to resource-constrained IoT settings necessitates dedicated research efforts. Furthermore, the paper addresses constraints imposed by limited computing resources, intricacies associated with large-scale IoT communication, as well as the critical concerns pertaining to security and privacy.
Abstract:In recent years, the agricultural industry has witnessed significant advancements in artificial intelligence (AI), particularly with the development of large-scale foundational models. Among these foundation models, the Segment Anything Model (SAM), introduced by Meta AI Research, stands out as a groundbreaking solution for object segmentation tasks. While SAM has shown success in various agricultural applications, its potential in the poultry industry, specifically in the context of cage-free hens, remains relatively unexplored. This study aims to assess the zero-shot segmentation performance of SAM on representative chicken segmentation tasks, including part-based segmentation and the use of infrared thermal images, and to explore chicken-tracking tasks by using SAM as a segmentation tool. The results demonstrate SAM's superior performance compared to SegFormer and SETR in both whole and part-based chicken segmentation. SAM-based object tracking also provides valuable data on the behavior and movement patterns of broiler birds. The findings of this study contribute to a better understanding of SAM's potential in poultry science and lay the foundation for future advancements in chicken segmentation and tracking.