Abstract:Large language models have driven significant progress in natural language processing, but their deployment requires substantial compute and memory resources. As models scale, compression techniques become essential for balancing model quality with computational efficiency. Structured pruning, which removes less critical components of the model, is a promising strategy for reducing complexity. However, one-shot pruning often results in significant quality degradation, particularly in tasks requiring multi-step reasoning. To recover lost quality, supervised fine-tuning (SFT) is commonly applied, but it can lead to catastrophic forgetting by shifting the model's learned data distribution. Therefore, addressing the degradation from both pruning and SFT is essential to preserve the original model's quality. In this work, we propose self-data distilled fine-tuning to address these challenges. Our approach leverages the original, unpruned model to generate a distilled dataset that preserves semantic richness and mitigates catastrophic forgetting by maintaining alignment with the base model's knowledge. Empirically, we demonstrate that self-data distillation consistently outperforms standard SFT, improving average accuracy by up to 8% on the HuggingFace OpenLLM Leaderboard v1. Specifically, when pruning 6 decoder blocks on Llama3.1-8B Instruct (i.e., 32 to 26 layers, reducing the model size from 8.03B to 6.72B parameters), our method retains 91.2% of the original model's accuracy compared to 81.7% with SFT, while reducing real-world FLOPs by 16.30%. Furthermore, our approach scales effectively across datasets, with the quality improving as the dataset size increases.
Abstract:Temporally consistent depth estimation is crucial for real-time applications such as augmented reality. While stereo depth estimation has received substantial attention that led to improvements on a frame-by-frame basis, there is relatively little work focused on maintaining temporal consistency across frames. Indeed, based on our analysis, current stereo depth estimation techniques still suffer from poor temporal consistency. Stabilizing depth temporally in dynamic scenes is challenging due to concurrent object and camera motion. In an online setting, this process is further aggravated because only past frames are available. In this paper, we present a technique to produce temporally consistent depth estimates in dynamic scenes in an online setting. Our network augments current per-frame stereo networks with novel motion and fusion networks. The motion network accounts for both object and camera motion by predicting a per-pixel SE3 transformation. The fusion network improves consistency in prediction by aggregating the current and previous predictions with regressed weights. We conduct extensive experiments across varied datasets (synthetic, outdoor, indoor and medical). In both zero-shot generalization and domain fine-tuning, we demonstrate that our proposed approach outperforms competing methods in terms of temporal stability and per-frame accuracy, both quantitatively and qualitatively. Our code will be available online.
Abstract:From wearables to powerful smart devices, modern automatic speech recognition (ASR) models run on a variety of edge devices with different computational budgets. To navigate the Pareto front of model accuracy vs model size, researchers are trapped in a dilemma of optimizing model accuracy by training and fine-tuning models for each individual edge device while keeping the training GPU-hours tractable. In this paper, we propose Omni-sparsity DNN, where a single neural network can be pruned to generate optimized model for a large range of model sizes. We develop training strategies for Omni-sparsity DNN that allows it to find models along the Pareto front of word-error-rate (WER) vs model size while keeping the training GPU-hours to no more than that of training one singular model. We demonstrate the Omni-sparsity DNN with streaming E2E ASR models. Our results show great saving on training time and resources with similar or better accuracy on LibriSpeech compared to individually pruned sparse models: 2%-6.6% better WER on Test-other.
Abstract:On-device speech recognition requires training models of different sizes for deploying on devices with various computational budgets. When building such different models, we can benefit from training them jointly to take advantage of the knowledge shared between them. Joint training is also efficient since it reduces the redundancy in the training procedure's data handling operations. We propose a method for collaboratively training acoustic encoders of different sizes for speech recognition. We use a sequence transducer setup where different acoustic encoders share a common predictor and joiner modules. The acoustic encoders are also trained using co-distillation through an auxiliary task for frame level chenone prediction, along with the transducer loss. We perform experiments using the LibriSpeech corpus and demonstrate that the collaboratively trained acoustic encoders can provide up to a 11% relative improvement in the word error rate on both the test partitions.
Abstract:Automatic speech recognition (ASR) has become increasingly ubiquitous on modern edge devices. Past work developed streaming End-to-End (E2E) all-neural speech recognizers that can run compactly on edge devices. However, E2E ASR models are prone to overfitting and have difficulties in generalizing to unseen testing data. Various techniques have been proposed to regularize the training of ASR models, including layer normalization, dropout, spectrum data augmentation and speed distortions in the inputs. In this work, we present a simple yet effective noisy training strategy to further improve the E2E ASR model training. By introducing random noise to the parameter space during training, our method can produce smoother models at convergence that generalize better. We apply noisy training to improve both dense and sparse state-of-the-art Emformer models and observe consistent WER reduction. Specifically, when training Emformers with 90% sparsity, we achieve 12% and 14% WER improvements on the LibriSpeech Test-other and Test-clean data set, respectively.
Abstract:When tuning the architecture and hyperparameters of large machine learning models for on-device deployment, it is desirable to understand the optimal trade-offs between on-device latency and model accuracy. In this work, we leverage recent methodological advances in Bayesian optimization over high-dimensional search spaces and multi-objective Bayesian optimization to efficiently explore these trade-offs for a production-scale on-device natural language understanding model at Facebook.
Abstract:As neural network model sizes have dramatically increased, so has the interest in various techniques to reduce their parameter counts and accelerate their execution. An active area of research in this field is sparsity - encouraging zero values in parameters that can then be discarded from storage or computations. While most research focuses on high levels of sparsity, there are challenges in universally maintaining model accuracy as well as achieving significant speedups over modern matrix-math hardware. To make sparsity adoption practical, the NVIDIA Ampere GPU architecture introduces sparsity support in its matrix-math units, Tensor Cores. We present the design and behavior of Sparse Tensor Cores, which exploit a 2:4 (50%) sparsity pattern that leads to twice the math throughput of dense matrix units. We also describe a simple workflow for training networks that both satisfy 2:4 sparsity pattern requirements and maintain accuracy, verifying it on a wide range of common tasks and model architectures. This workflow makes it easy to prepare accurate models for efficient deployment on Sparse Tensor Cores.
Abstract:Recurrent transducer models have emerged as a promising solution for speech recognition on the current and next generation smart devices. The transducer models provide competitive accuracy within a reasonable memory footprint alleviating the memory capacity constraints in these devices. However, these models access parameters from off-chip memory for every input time step which adversely effects device battery life and limits their usability on low-power devices. We address transducer model's memory access concerns by optimizing their model architecture and designing novel recurrent cell designs. We demonstrate that i) model's energy cost is dominated by accessing model weights from off-chip memory, ii) transducer model architecture is pivotal in determining the number of accesses to off-chip memory and just model size is not a good proxy, iii) our transducer model optimizations and novel recurrent cell reduces off-chip memory accesses by 4.5x and model size by 2x with minimal accuracy impact.
Abstract:Current state-of-the-art approaches for Semi-supervised Video Object Segmentation (Semi-VOS) propagates information from previous frames to generate segmentation mask for the current frame. This results in high-quality segmentation across challenging scenarios such as changes in appearance and occlusion. But it also leads to unnecessary computations for stationary or slow-moving objects where the change across frames is minimal. In this work, we exploit this observation by using temporal information to quickly identify frames with minimal change and skip the heavyweight mask generation step. To realize this efficiency, we propose a novel dynamic network that estimates change across frames and decides which path -- computing a full network or reusing previous frame's feature -- to choose depending on the expected similarity. Experimental results show that our approach significantly improves inference speed without much accuracy degradation on challenging Semi-VOS datasets -- DAVIS 16, DAVIS 17, and YouTube-VOS. Furthermore, our approach can be applied to multiple Semi-VOS methods demonstrating its generality.
Abstract:Leveraging temporal information has been regarded as essential for developing video understanding models. However, how to properly incorporate temporal information into the recent successful instance discrimination based contrastive self-supervised learning (CSL) framework remains unclear. As an intuitive solution, we find that directly applying temporal augmentations does not help, or even impair video CSL in general. This counter-intuitive observation motivates us to re-design existing video CSL frameworks, for better integration of temporal knowledge. To this end, we present Temporal-aware Contrastive self-supervised learningTaCo, as a general paradigm to enhance video CSL. Specifically, TaCo selects a set of temporal transformations not only as strong data augmentation but also to constitute extra self-supervision for video understanding. By jointly contrasting instances with enriched temporal transformations and learning these transformations as self-supervised signals, TaCo can significantly enhance unsupervised video representation learning. For instance, TaCo demonstrates consistent improvement in downstream classification tasks over a list of backbones and CSL approaches. Our best model achieves 85.1% (UCF-101) and 51.6% (HMDB-51) top-1 accuracy, which is a 3% and 2.4% relative improvement over the previous state-of-the-art.