Abstract:Social media platforms have become vital spaces for public discourse, serving as modern agor\'as where a wide range of voices influence societal narratives. However, their open nature also makes them vulnerable to exploitation by malicious actors, including state-sponsored entities, who can conduct information operations (IOs) to manipulate public opinion. The spread of misinformation, false news, and misleading claims threatens democratic processes and societal cohesion, making it crucial to develop methods for the timely detection of inauthentic activity to protect the integrity of online discourse. In this work, we introduce a methodology designed to identify users orchestrating information operations, a.k.a. \textit{IO drivers}, across various influence campaigns. Our framework, named \texttt{IOHunter}, leverages the combined strengths of Language Models and Graph Neural Networks to improve generalization in \emph{supervised}, \emph{scarcely-supervised}, and \emph{cross-IO} contexts. Our approach achieves state-of-the-art performance across multiple sets of IOs originating from six countries, significantly surpassing existing approaches. This research marks a step toward developing Graph Foundation Models specifically tailored for the task of IO detection on social media platforms.
Abstract:Digital platforms such as social media and e-commerce websites adopt Recommender Systems to provide value to the user. However, the social consequences deriving from their adoption are still unclear. Many scholars argue that recommenders may lead to detrimental effects, such as bias-amplification deriving from the feedback loop between algorithmic suggestions and users' choices. Nonetheless, the extent to which recommenders influence changes in users leaning remains uncertain. In this context, it is important to provide a controlled environment for evaluating the recommendation algorithm before deployment. To address this, we propose a stochastic simulation framework that mimics user-recommender system interactions in a long-term scenario. In particular, we simulate the user choices by formalizing a user model, which comprises behavioral aspects, such as the user resistance towards the recommendation algorithm and their inertia in relying on the received suggestions. Additionally, we introduce two novel metrics for quantifying the algorithm's impact on user preferences, specifically in terms of drift over time. We conduct an extensive evaluation on multiple synthetic datasets, aiming at testing the robustness of our framework when considering different scenarios and hyper-parameters setting. The experimental results prove that the proposed methodology is effective in detecting and quantifying the drift over the users preferences by means of the simulation. All the code and data used to perform the experiments are publicly available.
Abstract:Recent developments in recommendation have harnessed the collaborative power of graph neural networks (GNNs) in learning users' preferences from user-item networks. Despite emerging regulations addressing fairness of automated systems, unfairness issues in graph collaborative filtering remain underexplored, especially from the consumer's perspective. Despite numerous contributions on consumer unfairness, only a few of these works have delved into GNNs. A notable gap exists in the formalization of the latest mitigation algorithms, as well as in their effectiveness and reliability on cutting-edge models. This paper serves as a solid response to recent research highlighting unfairness issues in graph collaborative filtering by reproducing one of the latest mitigation methods. The reproduced technique adjusts the system fairness level by learning a fair graph augmentation. Under an experimental setup based on 11 GNNs, 5 non-GNN models, and 5 real-world networks across diverse domains, our investigation reveals that fair graph augmentation is consistently effective on high-utility models and large datasets. Experiments on the transferability of the fair augmented graph open new issues for future recommendation studies. Source code: https://github.com/jackmedda/FA4GCF.
Abstract:Slate recommendation is a technique commonly used on streaming platforms and e-commerce sites to present multiple items together. A significant challenge with slate recommendation is managing the complex combinatorial choice space. Traditional methods often simplify this problem by assuming users engage with only one item at a time. However, this simplification does not reflect the reality, as users often interact with multiple items simultaneously. In this paper, we address the general slate recommendation problem, which accounts for simultaneous engagement with multiple items. We propose a generative approach using Diffusion Models, leveraging their ability to learn structures in high-dimensional data. Our model generates high-quality slates that maximize user satisfaction by overcoming the challenges of the combinatorial choice space. Furthermore, our approach enhances the diversity of recommendations. Extensive offline evaluations on applications such as music playlist generation and e-commerce bundle recommendations show that our model outperforms state-of-the-art baselines in both relevance and diversity.
Abstract:In the realm of personalization, integrating diverse information sources such as consumption signals and content-based representations is becoming increasingly critical to build state-of-the-art solutions. In this regard, two of the biggest trends in research around this subject are Graph Neural Networks (GNNs) and Foundation Models (FMs). While GNNs emerged as a popular solution in industry for powering personalization at scale, FMs have only recently caught attention for their promising performance in personalization tasks like ranking and retrieval. In this paper, we present a graph-based foundation modeling approach tailored to personalization. Central to this approach is a Heterogeneous GNN (HGNN) designed to capture multi-hop content and consumption relationships across a range of recommendable item types. To ensure the generality required from a Foundation Model, we employ a Large Language Model (LLM) text-based featurization of nodes that accommodates all item types, and construct the graph using co-interaction signals, which inherently transcend content specificity. To facilitate practical generalization, we further couple the HGNN with an adaptation mechanism based on a two-tower (2T) architecture, which also operates agnostically to content type. This multi-stage approach ensures high scalability; while the HGNN produces general purpose embeddings, the 2T component models in a continuous space the sheer size of user-item interaction data. Our comprehensive approach has been rigorously tested and proven effective in delivering recommendations across a diverse array of products within a real-world, industrial audio streaming platform.
Abstract:In the ever-evolving digital audio landscape, Spotify, well-known for its music and talk content, has recently introduced audiobooks to its vast user base. While promising, this move presents significant challenges for personalized recommendations. Unlike music and podcasts, audiobooks, initially available for a fee, cannot be easily skimmed before purchase, posing higher stakes for the relevance of recommendations. Furthermore, introducing a new content type into an existing platform confronts extreme data sparsity, as most users are unfamiliar with this new content type. Lastly, recommending content to millions of users requires the model to react fast and be scalable. To address these challenges, we leverage podcast and music user preferences and introduce 2T-HGNN, a scalable recommendation system comprising Heterogeneous Graph Neural Networks (HGNNs) and a Two Tower (2T) model. This novel approach uncovers nuanced item relationships while ensuring low latency and complexity. We decouple users from the HGNN graph and propose an innovative multi-link neighbor sampler. These choices, together with the 2T component, significantly reduce the complexity of the HGNN model. Empirical evaluations involving millions of users show significant improvement in the quality of personalized recommendations, resulting in a +46% increase in new audiobooks start rate and a +23% boost in streaming rates. Intriguingly, our model's impact extends beyond audiobooks, benefiting established products like podcasts.
Abstract:Efforts in the recommendation community are shifting from the sole emphasis on utility to considering beyond-utility factors, such as fairness and robustness. Robustness of recommendation models is typically linked to their ability to maintain the original utility when subjected to attacks. Limited research has explored the robustness of a recommendation model in terms of fairness, e.g., the parity in performance across groups, under attack scenarios. In this paper, we aim to assess the robustness of graph-based recommender systems concerning fairness, when exposed to attacks based on edge-level perturbations. To this end, we considered four different fairness operationalizations, including both consumer and provider perspectives. Experiments on three datasets shed light on the impact of perturbations on the targeted fairness notion, uncovering key shortcomings in existing evaluation protocols for robustness. As an example, we observed perturbations affect consumer fairness on a higher extent than provider fairness, with alarming unfairness for the former. Source code: https://github.com/jackmedda/CPFairRobust
Abstract:Federated Learning (FL) has emerged as a key approach for distributed machine learning, enhancing online personalization while ensuring user data privacy. Instead of sending private data to a central server as in traditional approaches, FL decentralizes computations: devices train locally and share updates with a global server. A primary challenge in this setting is achieving fast and accurate model training - vital for recommendation systems where delays can compromise user engagement. This paper introduces FedFNN, an algorithm that accelerates decentralized model training. In FL, only a subset of users are involved in each training epoch. FedFNN employs supervised learning to predict weight updates from unsampled users, using updates from the sampled set. Our evaluations, using real and synthetic data, show: 1. FedFNN achieves training speeds 5x faster than leading methods, maintaining or improving accuracy; 2. the algorithm's performance is consistent regardless of client cluster variations; 3. FedFNN outperforms other methods in scenarios with limited client availability, converging more quickly.
Abstract:In recommendation literature, explainability and fairness are becoming two prominent perspectives to consider. However, prior works have mostly addressed them separately, for instance by explaining to consumers why a certain item was recommended or mitigating disparate impacts in recommendation utility. None of them has leveraged explainability techniques to inform unfairness mitigation. In this paper, we propose an approach that relies on counterfactual explanations to augment the set of user-item interactions, such that using them while inferring recommendations leads to fairer outcomes. Modeling user-item interactions as a bipartite graph, our approach augments the latter by identifying new user-item edges that not only can explain the original unfairness by design, but can also mitigate it. Experiments on two public data sets show that our approach effectively leads to a better trade-off between fairness and recommendation utility compared with state-of-the-art mitigation procedures. We further analyze the characteristics of added edges to highlight key unfairness patterns. Source code available at https://github.com/jackmedda/RS-BGExplainer/tree/cikm2023.
Abstract:In recent years, personalization research has been delving into issues of explainability and fairness. While some techniques have emerged to provide post-hoc and self-explanatory individual recommendations, there is still a lack of methods aimed at uncovering unfairness in recommendation systems beyond identifying biased user and item features. This paper proposes a new algorithm, GNNUERS, which uses counterfactuals to pinpoint user unfairness explanations in terms of user-item interactions within a bi-partite graph. By perturbing the graph topology, GNNUERS reduces differences in utility between protected and unprotected demographic groups. The paper evaluates the approach using four real-world graphs from different domains and demonstrates its ability to systematically explain user unfairness in three state-of-the-art GNN-based recommendation models. This perturbed network analysis reveals insightful patterns that confirm the nature of the unfairness underlying the explanations. The source code and preprocessed datasets are available at https://github.com/jackmedda/RS-BGExplainer