Abstract:We present hyper-connections, a simple yet effective method that can serve as an alternative to residual connections. This approach specifically addresses common drawbacks observed in residual connection variants, such as the seesaw effect between gradient vanishing and representation collapse. Theoretically, hyper-connections allow the network to adjust the strength of connections between features at different depths and dynamically rearrange layers. We conduct experiments focusing on the pre-training of large language models, including dense and sparse models, where hyper-connections show significant performance improvements over residual connections. Additional experiments conducted on vision tasks also demonstrate similar improvements. We anticipate that this method will be broadly applicable and beneficial across a wide range of AI problems.
Abstract:The multi-domain image-to-image translation is a challenging task where the goal is to translate an image into multiple different domains. The target-only characteristics are desired for translated images, while the source-only characteristics should be erased. However, recent methods often suffer from retaining the characteristics of the source domain, which are incompatible with the target domain. To address this issue, we propose a method called Untraceable GAN, which has a novel source classifier to differentiate which domain an image is translated from, and determines whether the translated image still retains the characteristics of the source domain. Furthermore, we take the prototype of the target domain as the guidance for the translator to effectively synthesize the target-only characteristics. The translator is learned to synthesize the target-only characteristics and make the source domain untraceable for the discriminator, so that the source-only characteristics are erased. Finally, extensive experiments on three face editing tasks, including face aging, makeup, and expression editing, show that the proposed UGAN can produce superior results over the state-of-the-art models. The source code will be released.
Abstract:Face aging, which renders aging faces for an input face, has attracted extensive attention in the multimedia research. Recently, several conditional Generative Adversarial Nets (GANs) based methods have achieved great success. They can generate images fitting the real face distributions conditioned on each individual age group. However, these methods fail to capture the transition patterns, e.g., the gradual shape and texture changes between adjacent age groups. In this paper, we propose a novel Contextual Generative Adversarial Nets (C-GANs) to specifically take it into consideration. The C-GANs consists of a conditional transformation network and two discriminative networks. The conditional transformation network imitates the aging procedure with several specially designed residual blocks. The age discriminative network guides the synthesized face to fit the real conditional distribution. The transition pattern discriminative network is novel, aiming to distinguish the real transition patterns with the fake ones. It serves as an extra regularization term for the conditional transformation network, ensuring the generated image pairs to fit the corresponding real transition pattern distribution. Experimental results demonstrate the proposed framework produces appealing results by comparing with the state-of-the-art and ground truth. We also observe performance gain for cross-age face verification.
Abstract:Human parsing has been extensively studied recently due to its wide applications in many important scenarios. Mainstream fashion parsing models focus on parsing the high-resolution and clean images. However, directly applying the parsers trained on benchmarks to a particular application scenario in the wild, e.g., a canteen, airport or workplace, often gives non-satisfactory performance due to domain shift. In this paper, we explore a new and challenging cross-domain human parsing problem: taking the benchmark dataset with extensive pixel-wise labeling as the source domain, how to obtain a satisfactory parser on a new target domain without requiring any additional manual labeling? To this end, we propose a novel and efficient cross-domain human parsing model to bridge the cross-domain differences in terms of visual appearance and environment conditions and fully exploit commonalities across domains. Our proposed model explicitly learns a feature compensation network, which is specialized for mitigating the cross-domain differences. A discriminative feature adversarial network is introduced to supervise the feature compensation to effectively reduce the discrepancy between feature distributions of two domains. Besides, our model also introduces a structured label adversarial network to guide the parsing results of the target domain to follow the high-order relationships of the structured labels shared across domains. The proposed framework is end-to-end trainable, practical and scalable in real applications. Extensive experiments are conducted where LIP dataset is the source domain and 4 different datasets including surveillance videos, movies and runway shows are evaluated as target domains. The results consistently confirm data efficiency and performance advantages of the proposed method for the cross-domain human parsing problem.