Abstract:Multiple object tracking is a critical task in autonomous driving. Existing works primarily focus on the heuristic design of neural networks to obtain high accuracy. As tracking accuracy improves, however, neural networks become increasingly complex, posing challenges for their practical application in real driving scenarios due to the high level of latency. In this paper, we explore the use of the neural architecture search (NAS) methods to search for efficient architectures for tracking, aiming for low real-time latency while maintaining relatively high accuracy. Another challenge for object tracking is the unreliability of a single sensor, therefore, we propose a multi-modal framework to improve the robustness. Experiments demonstrate that our algorithm can run on edge devices within lower latency constraints, thus greatly reducing the computational requirements for multi-modal object tracking while keeping lower latency.
Abstract:Active learning selects informative samples for annotation within budget, which has proven efficient recently on object detection. However, the widely used active detection benchmarks conduct image-level evaluation, which is unrealistic in human workload estimation and biased towards crowded images. Furthermore, existing methods still perform image-level annotation, but equally scoring all targets within the same image incurs waste of budget and redundant labels. Having revealed above problems and limitations, we introduce a box-level active detection framework that controls a box-based budget per cycle, prioritizes informative targets and avoids redundancy for fair comparison and efficient application. Under the proposed box-level setting, we devise a novel pipeline, namely Complementary Pseudo Active Strategy (ComPAS). It exploits both human annotations and the model intelligence in a complementary fashion: an efficient input-end committee queries labels for informative objects only; meantime well-learned targets are identified by the model and compensated with pseudo-labels. ComPAS consistently outperforms 10 competitors under 4 settings in a unified codebase. With supervision from labeled data only, it achieves 100% supervised performance of VOC0712 with merely 19% box annotations. On the COCO dataset, it yields up to 4.3% mAP improvement over the second-best method. ComPAS also supports training with the unlabeled pool, where it surpasses 90% COCO supervised performance with 85% label reduction. Our source code is publicly available at https://github.com/lyumengyao/blad.
Abstract:From childhood to youth, human gradually come to know the world. But for neural networks, this growing process seems difficult. Trapped in catastrophic forgetting, current researchers feed data of all categories to a neural network which remains the same structure in the whole training process. We compare this training process with human learing patterns, and find two major conflicts. In this paper, we study how to solve these conflicts on generative models based on the conditional variational autoencoder(CVAE) model. To solve the uncontinuous conflict, we apply memory playback strategy to maintain the model's recognizing and generating ability on invisible used categories. And we extend the traditional one-way CVAE to a circulatory mode to better accomplish memory playback strategy. To solve the `dead' structure conflict, we rewrite the CVAE formula then are able to make a novel interpretation about the funtions of different parts in CVAE models. Based on the new understanding, we find ways to dynamically extend the network structure when training on new categories. We verify the effectiveness of our methods on MNIST and Fashion MNIST and display some very insteresting results.