Abstract:Diffusion-based video generation models have made significant strides, producing outputs with improved visual fidelity, temporal coherence, and user control. These advancements hold great promise for improving surgical education by enabling more realistic, diverse, and interactive simulation environments. In this study, we introduce SurGen, a text-guided diffusion model tailored for surgical video synthesis, producing the highest resolution and longest duration videos among existing surgical video generation models. We validate the visual and temporal quality of the outputs using standard image and video generation metrics. Additionally, we assess their alignment to the corresponding text prompts through a deep learning classifier trained on surgical data. Our results demonstrate the potential of diffusion models to serve as valuable educational tools for surgical trainees.
Abstract:Surgery requires comprehensive medical knowledge, visual assessment skills, and procedural expertise. While recent surgical AI models have focused on solving task-specific problems, there is a need for general-purpose systems that can understand surgical scenes and interact through natural language. This paper introduces GP-VLS, a general-purpose vision language model for surgery that integrates medical and surgical knowledge with visual scene understanding. For comprehensively evaluating general-purpose surgical models, we propose SurgiQual, which evaluates across medical and surgical knowledge benchmarks as well as surgical vision-language questions. To train GP-VLS, we develop six new datasets spanning medical knowledge, surgical textbooks, and vision-language pairs for tasks like phase recognition and tool identification. We show that GP-VLS significantly outperforms existing open- and closed-source models on surgical vision-language tasks, with 8-21% improvements in accuracy across SurgiQual benchmarks. GP-VLS also demonstrates strong performance on medical and surgical knowledge tests compared to open-source alternatives. Overall, GP-VLS provides an open-source foundation for developing AI assistants to support surgeons across a wide range of tasks and scenarios.
Abstract:Diffusion models have recently gained significant traction due to their ability to generate high-fidelity and diverse images and videos conditioned on text prompts. In medicine, this application promises to address the critical challenge of data scarcity, a consequence of barriers in data sharing, stringent patient privacy regulations, and disparities in patient population and demographics. By generating realistic and varying medical 2D and 3D images, these models offer a rich, privacy-respecting resource for algorithmic training and research. To this end, we introduce MediSyn, a pair of instruction-tuned text-guided latent diffusion models with the ability to generate high-fidelity and diverse medical 2D and 3D images across specialties and modalities. Through established metrics, we show significant improvement in broad medical image and video synthesis guided by text prompts.
Abstract:Clinicians spend large amounts of time on clinical documentation, and inefficiencies impact quality of care and increase clinician burnout. Despite the promise of electronic medical records (EMR), the transition from paper-based records has been negatively associated with clinician wellness, in part due to poor user experience, increased burden of documentation, and alert fatigue. In this study, we present Almanac Copilot, an autonomous agent capable of assisting clinicians with EMR-specific tasks such as information retrieval and order placement. On EHR-QA, a synthetic evaluation dataset of 300 common EHR queries based on real patient data, Almanac Copilot obtains a successful task completion rate of 74% (n = 221 tasks) with a mean score of 2.45 over 3 (95% CI:2.34-2.56). By automating routine tasks and streamlining the documentation process, our findings highlight the significant potential of autonomous agents to mitigate the cognitive load imposed on clinicians by current EMR systems.
Abstract:Cardiac MRI allows for a comprehensive assessment of myocardial structure, function, and tissue characteristics. Here we describe a foundational vision system for cardiac MRI, capable of representing the breadth of human cardiovascular disease and health. Our deep learning model is trained via self-supervised contrastive learning, by which visual concepts in cine-sequence cardiac MRI scans are learned from the raw text of the accompanying radiology reports. We train and evaluate our model on data from four large academic clinical institutions in the United States. We additionally showcase the performance of our models on the UK BioBank, and two additional publicly available external datasets. We explore emergent zero-shot capabilities of our system, and demonstrate remarkable performance across a range of tasks; including the problem of left ventricular ejection fraction regression, and the diagnosis of 35 different conditions such as cardiac amyloidosis and hypertrophic cardiomyopathy. We show that our deep learning system is capable of not only understanding the staggering complexity of human cardiovascular disease, but can be directed towards clinical problems of interest yielding impressive, clinical grade diagnostic accuracy with a fraction of the training data typically required for such tasks.
Abstract:Cardiovascular diseases stand as the primary global cause of mortality. Among the various imaging techniques available for visualising the heart and evaluating its function, echocardiograms emerge as the preferred choice due to their safety and low cost. Quantifying cardiac function based on echocardiograms is very laborious, time-consuming and subject to high interoperator variability. In this work, we introduce EchoAI, an echocardiogram foundation model, that is trained using self-supervised learning (SSL) on 1.5 million echocardiograms. We evaluate our approach by fine-tuning EchoAI to estimate the ejection fraction achieving a mean absolute percentage error of 9.40%. This level of accuracy aligns with the performance of expert sonographers.
Abstract:Medicine, by its nature, is a multifaceted domain that requires the synthesis of information across various modalities. Medical generative vision-language models (VLMs) make a first step in this direction and promise many exciting clinical applications. However, existing models typically have to be fine-tuned on sizeable down-stream datasets, which poses a significant limitation as in many medical applications data is scarce, necessitating models that are capable of learning from few examples in real-time. Here we propose Med-Flamingo, a multimodal few-shot learner adapted to the medical domain. Based on OpenFlamingo-9B, we continue pre-training on paired and interleaved medical image-text data from publications and textbooks. Med-Flamingo unlocks few-shot generative medical visual question answering (VQA) abilities, which we evaluate on several datasets including a novel challenging open-ended VQA dataset of visual USMLE-style problems. Furthermore, we conduct the first human evaluation for generative medical VQA where physicians review the problems and blinded generations in an interactive app. Med-Flamingo improves performance in generative medical VQA by up to 20\% in clinician's rating and firstly enables multimodal medical few-shot adaptations, such as rationale generation. We release our model, code, and evaluation app under https://github.com/snap-stanford/med-flamingo.
Abstract:This paper presents the development and validation of a Generative Adversarial Network (GAN) purposed to create high-resolution, realistic Anterior Segment Optical Coherence Tomography (AS-OCT) images. We trained the Style and WAvelet based GAN (SWAGAN) on 142,628 AS-OCT B-scans. Three experienced refractive surgeons performed a blinded assessment to evaluate the realism of the generated images; their results were not significantly better than chance in distinguishing between real and synthetic images, thus demonstrating a high degree of image realism. To gauge their suitability for machine learning tasks, a convolutional neural network (CNN) classifier was trained with a dataset containing both real and GAN-generated images. The CNN demonstrated an accuracy rate of 78% trained on real images alone, but this accuracy rose to 100% when training included the generated images. This underscores the utility of synthetic images for machine learning applications. We further improved the resolution of the generated images by up-sampling them twice (2x) using an Enhanced Super Resolution GAN (ESRGAN), which outperformed traditional up-sampling techniques. In conclusion, GANs can effectively generate high-definition, realistic AS-OCT images, proving highly beneficial for machine learning and image analysis tasks.
Abstract:Large-language models have recently demonstrated impressive zero-shot capabilities in a variety of natural language tasks such as summarization, dialogue generation, and question-answering. Despite many promising applications in clinical medicine (e.g. medical record documentation, treatment guideline-lookup), adoption of these models in real-world settings has been largely limited by their tendency to generate factually incorrect and sometimes even toxic statements. In this paper we explore the ability of large-language models to facilitate and streamline medical guidelines and recommendation referencing: by enabling these model to access external point-of-care tools in response to physician queries, we demonstrate significantly improved factual grounding, helpfulness, and safety in a variety of clinical scenarios.
Abstract:During their formative years, radiology trainees are required to interpret hundreds of mammograms per month, with the objective of becoming apt at discerning the subtle patterns differentiating benign from malignant lesions. Unfortunately, medico-legal and technical hurdles make it difficult to access and query medical images for training. In this paper we train a generative adversarial network (GAN) to synthesize 512 x 512 high-resolution mammograms. The resulting model leads to the unsupervised separation of high-level features (e.g. the standard mammography views and the nature of the breast lesions), with stochastic variation in the generated images (e.g. breast adipose tissue, calcification), enabling user-controlled global and local attribute-editing of the synthesized images. We demonstrate the model's ability to generate anatomically and medically relevant mammograms by achieving an average AUC of 0.54 in a double-blind study on four expert mammography radiologists to distinguish between generated and real images, ascribing to the high visual quality of the synthesized and edited mammograms, and to their potential use in advancing and facilitating medical education.