Abstract:Artificial intelligence (AI) provides a promising substitution for streamlining COVID-19 diagnoses. However, concerns surrounding security and trustworthiness impede the collection of large-scale representative medical data, posing a considerable challenge for training a well-generalised model in clinical practices. To address this, we launch the Unified CT-COVID AI Diagnostic Initiative (UCADI), where the AI model can be distributedly trained and independently executed at each host institution under a federated learning framework (FL) without data sharing. Here we show that our FL model outperformed all the local models by a large yield (test sensitivity /specificity in China: 0.973/0.951, in the UK: 0.730/0.942), achieving comparable performance with a panel of professional radiologists. We further evaluated the model on the hold-out (collected from another two hospitals leaving out the FL) and heterogeneous (acquired with contrast materials) data, provided visual explanations for decisions made by the model, and analysed the trade-offs between the model performance and the communication costs in the federated training process. Our study is based on 9,573 chest computed tomography scans (CTs) from 3,336 patients collected from 23 hospitals located in China and the UK. Collectively, our work advanced the prospects of utilising federated learning for privacy-preserving AI in digital health.
Abstract:Cardiac MRI segmentation plays a crucial role in clinical diagnosis for evaluating personalized cardiac performance parameters. Due to the indistinct boundaries and heterogeneous intensity distributions in the cardiac MRI, most existing methods still suffer from two aspects of challenges: inter-class indistinction and intra-class inconsistency. To tackle these two problems, we propose a novel method to exploit the directional feature maps, which can simultaneously strengthen the differences between classes and the similarities within classes. Specifically, we perform cardiac segmentation and learn a direction field pointing away from the nearest cardiac tissue boundary to each pixel via a direction field (DF) module. Based on the learned direction field, we then propose a feature rectification and fusion (FRF) module to improve the original segmentation features, and obtain the final segmentation. The proposed modules are simple yet effective and can be flexibly added to any existing segmentation network without excessively increasing time and space complexity. We evaluate the proposed method on the 2017 MICCAI Automated Cardiac Diagnosis Challenge (ACDC) dataset and a large-scale self-collected dataset, showing good segmentation performance and robust generalization ability of the proposed method.
Abstract:Faster RCNN has achieved great success for generic object detection including PASCAL object detection and MS COCO object detection. In this report, we propose a detailed designed Faster RCNN method named FDNet1.0 for face detection. Several techniques were employed including multi-scale training, multi-scale testing, light-designed RCNN, some tricks for inference and a vote-based ensemble method. Our method achieves two 1th places and one 2nd place in three tasks over WIDER FACE validation dataset (easy set, medium set, hard set).