Lehigh University
Abstract:Low-light image enhancement remains a challenging task in computer vision, with existing state-of-the-art models often limited by hardware constraints and computational inefficiencies, particularly in handling high-resolution images. Recent foundation models, such as transformers and diffusion models, despite their efficacy in various domains, are limited in use on edge devices due to their computational complexity and slow inference times. We introduce ExpoMamba, a novel architecture that integrates components of the frequency state space within a modified U-Net, offering a blend of efficiency and effectiveness. This model is specifically optimized to address mixed exposure challenges, a common issue in low-light image enhancement, while ensuring computational efficiency. Our experiments demonstrate that ExpoMamba enhances low-light images up to 2-3x faster than traditional models with an inference time of 36.6 ms and achieves a PSNR improvement of approximately 15-20% over competing models, making it highly suitable for real-time image processing applications.
Abstract:Despite recent strides made by AI in image processing, the issue of mixed exposure, pivotal in many real-world scenarios like surveillance and photography, remains inadequately addressed. Traditional image enhancement techniques and current transformer models are limited with primary focus on either overexposure or underexposure. To bridge this gap, we introduce the Unified-Exposure Guided Transformer (Unified-EGformer). Our proposed solution is built upon advanced transformer architectures, equipped with local pixel-level refinement and global refinement blocks for color correction and image-wide adjustments. We employ a guided attention mechanism to precisely identify exposure-compromised regions, ensuring its adaptability across various real-world conditions. U-EGformer, with a lightweight design featuring a memory footprint (peak memory) of only $\sim$1134 MB (0.1 Million parameters) and an inference time of 95 ms (9.61x faster than the average), is a viable choice for real-time applications such as surveillance and autonomous navigation. Additionally, our model is highly generalizable, requiring minimal fine-tuning to handle multiple tasks and datasets with a single architecture.
Abstract:MTL is a learning paradigm that effectively leverages both task-specific and shared information to address multiple related tasks simultaneously. In contrast to STL, MTL offers a suite of benefits that enhance both the training process and the inference efficiency. MTL's key advantages encompass streamlined model architecture, performance enhancement, and cross-domain generalizability. Over the past twenty years, MTL has become widely recognized as a flexible and effective approach in various fields, including CV, NLP, recommendation systems, disease prognosis and diagnosis, and robotics. This survey provides a comprehensive overview of the evolution of MTL, encompassing the technical aspects of cutting-edge methods from traditional approaches to deep learning and the latest trend of pretrained foundation models. Our survey methodically categorizes MTL techniques into five key areas: regularization, relationship learning, feature propagation, optimization, and pre-training. This categorization not only chronologically outlines the development of MTL but also dives into various specialized strategies within each category. Furthermore, the survey reveals how the MTL evolves from handling a fixed set of tasks to embracing a more flexible approach free from task or modality constraints. It explores the concepts of task-promptable and -agnostic training, along with the capacity for ZSL, which unleashes the untapped potential of this historically coveted learning paradigm. Overall, we hope this survey provides the research community with a comprehensive overview of the advancements in MTL from its inception in 1997 to the present in 2023. We address present challenges and look ahead to future possibilities, shedding light on the opportunities and potential avenues for MTL research in a broad manner. This project is publicly available at https://github.com/junfish/Awesome-Multitask-Learning.
Abstract:AI applications are becoming increasingly visible to the general public. There is a notable gap between the theoretical assumptions researchers make about computer vision models and the reality those models face when deployed in the real world. One of the critical reasons for this gap is a challenging problem known as distribution shift. Distribution shifts tend to vary with complexity of the data, dataset size, and application type. In our paper, we discuss the identification of such a prominent gap, exploring the concept of distribution shift and its critical significance. We provide an in-depth overview of various types of distribution shifts, elucidate their distinctions, and explore techniques within the realm of the data-centric domain employed to address them. Distribution shifts can occur during every phase of the machine learning pipeline, from the data collection stage to the stage of training a machine learning model to the stage of final model deployment. As a result, it raises concerns about the overall robustness of the machine learning techniques for computer vision applications that are deployed publicly for consumers. Different deep learning models each tailored for specific type of data and tasks, architectural pipelines; highlighting how variations in data preprocessing and feature extraction can impact robustness., data augmentation strategies (e.g. geometric, synthetic and learning-based); demonstrating their role in enhancing model generalization, and training mechanisms (e.g. transfer learning, zero-shot) fall under the umbrella of data-centric methods. Each of these components form an integral part of the neural-network we analyze contributing uniquely to strengthening model robustness against distribution shifts. We compare and contrast numerous AI models that are built for mitigating shifts in hidden stratification and spurious correlations, ...
Abstract:While unsupervised domain adaptation has been explored to leverage the knowledge from a labeled source domain to an unlabeled target domain, existing methods focus on the distribution alignment between two domains. However, how to better align source and target features is not well addressed. In this paper, we propose a deep feature registration (DFR) model to generate registered features that maintain domain invariant features and simultaneously minimize the domain-dissimilarity of registered features and target features via histogram matching. We further employ a pseudo label refinement process, which considers both probabilistic soft selection and center-based hard selection to improve the quality of pseudo labels in the target domain. Extensive experiments on multiple UDA benchmarks demonstrate the effectiveness of our DFR model, resulting in new state-of-the-art performance.
Abstract:In this paper, we introduce a unified and generalist Biomedical Generative Pre-trained Transformer (BiomedGPT) model, which leverages self-supervision on large and diverse datasets to accept multi-modal inputs and perform a range of downstream tasks. Our experiments demonstrate that BiomedGPT delivers expansive and inclusive representations of biomedical data, outperforming the majority of preceding state-of-the-art models across five distinct tasks with 20 public datasets spanning over 15 unique biomedical modalities. Through the ablation study, we also showcase the efficacy of our multi-modal and multi-task pretraining approach in transferring knowledge to previously unseen data. Overall, our work presents a significant step forward in developing unified and generalist models for biomedicine, with far-reaching implications for improving healthcare outcomes.
Abstract:The goal of unbiased learning to rank (ULTR) is to leverage implicit user feedback for optimizing learning-to-rank systems. Among existing solutions, automatic ULTR algorithms that jointly learn user bias models (i.e., propensity models) with unbiased rankers have received a lot of attention due to their superior performance and low deployment cost in practice. Despite their theoretical soundness, the effectiveness is usually justified under a weak logging policy, where the ranking model can barely rank documents according to their relevance to the query. However, when the logging policy is strong, e.g., an industry-deployed ranking policy, the reported effectiveness cannot be reproduced. In this paper, we first investigate ULTR from a causal perspective and uncover a negative result: existing ULTR algorithms fail to address the issue of propensity overestimation caused by the query-document relevance confounder. Then, we propose a new learning objective based on backdoor adjustment and highlight its differences from conventional propensity models, which reveal the prevalence of propensity overestimation. On top of that, we introduce a novel propensity model called Logging-Policy-aware Propensity (LPP) model and its distinctive two-step optimization strategy, which allows for the joint learning of LPP and ranking models within the automatic ULTR framework, and actualize the unconfounded propensity estimation for ULTR. Extensive experiments on two benchmarks demonstrate the effectiveness and generalizability of the proposed method.
Abstract:Unbiased Learning to Rank~(ULTR) that learns to rank documents with biased user feedback data is a well-known challenge in information retrieval. Existing methods in unbiased learning to rank typically rely on click modeling or inverse propensity weighting~(IPW). Unfortunately, the search engines are faced with severe long-tail query distribution, where neither click modeling nor IPW can handle well. Click modeling suffers from data sparsity problem since the same query-document pair appears limited times on tail queries; IPW suffers from high variance problem since it is highly sensitive to small propensity score values. Therefore, a general debiasing framework that works well under tail queries is in desperate need. To address this problem, we propose a model-based unbiased learning-to-rank framework. Specifically, we develop a general context-aware user simulator to generate pseudo clicks for unobserved ranked lists to train rankers, which addresses the data sparsity problem. In addition, considering the discrepancy between pseudo clicks and actual clicks, we take the observation of a ranked list as the treatment variable and further incorporate inverse propensity weighting with pseudo labels in a doubly robust way. The derived bias and variance indicate that the proposed model-based method is more robust than existing methods. Finally, extensive experiments on benchmark datasets, including simulated datasets and real click logs, demonstrate that the proposed model-based method consistently performs outperforms state-of-the-art methods in various scenarios.
Abstract:A large amount of information is stored in data tables. Users can search for data tables using a keyword-based query. A table is composed primarily of data values that are organized in rows and columns providing implicit structural information. A table is usually accompanied by secondary information such as the caption, page title, etc., that form the textual information. Understanding the connection between the textual and structural information is an important yet neglected aspect in table retrieval as previous methods treat each source of information independently. In addition, users can search for data tables that are similar to an existing table, and this setting can be seen as a content-based table retrieval. In this paper, we propose StruBERT, a structure-aware BERT model that fuses the textual and structural information of a data table to produce context-aware representations for both textual and tabular content of a data table. StruBERT features are integrated in a new end-to-end neural ranking model to solve three table-related downstream tasks: keyword- and content-based table retrieval, and table similarity. We evaluate our approach using three datasets, and we demonstrate substantial improvements in terms of retrieval and classification metrics over state-of-the-art methods.
Abstract:Many deep neural networks are susceptible to minute perturbations of images that have been carefully crafted to cause misclassification. Ideally, a robust classifier would be immune to small variations in input images, and a number of defensive approaches have been created as a result. One method would be to discern a latent representation which could ignore small changes to the input. However, typical autoencoders easily mingle inter-class latent representations when there are strong similarities between classes, making it harder for a decoder to accurately project the image back to the original high-dimensional space. We propose a novel framework, Memory Defense, an augmented classifier with a memory-masking autoencoder to counter this challenge. By masking other classes, the autoencoder learns class-specific independent latent representations. We test the model's robustness against four widely used attacks. Experiments on the Fashion-MNIST & CIFAR-10 datasets demonstrate the superiority of our model. We make available our source code at GitHub repository: https://github.com/eashanadhikarla/MemDefense