Abstract:Language models have shown impressive in-context-learning capabilities, which allow them to benefit from input prompts and perform better on downstream end tasks. Existing works investigate the mechanisms behind this observation, and propose label-agnostic prompt metrics that can better estimate end-task performances. One popular approach is using perplexity as a way to measure models' familiarity with the prompt. While showing consistent improvements on in-domain tasks, we found that familiarity metrics such as perplexity cannot accurately estimate performance in complicated situations such as task or domain transferring scenarios. In this work, we propose a revised measure called FamiCom, providing a more comprehensive measure for task-agnostic performance estimation. Specifically, FamiCom combines familiarity with \textit{complexity} -- the inherent difficulty of end tasks, which is an important factor missing from current metrics. Experiments show that FamiCom strongly correlates with end-task performances, producing a 0.85 Spearman's correlation, versus 0.43 of familiarity-only ones'. We further apply FamiCom to automatic prompt and demonstration selection, and outperform existing methods and baselines by more than 7.0% in accuracy.
Abstract:We introduce a new on-policy algorithm called Rewarded Region Replay (R3), which significantly improves on PPO in solving environments with discrete action spaces. R3 improves sample efficiency by using a replay buffer which contains past successful trajectories with reward above a certain threshold, which are used to update a PPO agent with importance sampling. Crucially, we discard the importance sampling factors which are above a certain ratio to reduce variance and stabilize training. We found that R3 significantly outperforms PPO in Minigrid environments with sparse rewards and discrete action space, such as DoorKeyEnv and CrossingEnv, and moreover we found that the improvement margin of our method versus baseline PPO increases with the complexity of the environment. We also benchmarked the performance of R3 against DDQN (Double Deep Q-Network), which is a standard baseline in off-policy methods for discrete actions, and found that R3 also outperforms DDQN agent in DoorKeyEnv. Lastly, we adapt the idea of R3 to dense reward setting to obtain the Dense R3 algorithm (or DR3) and benchmarked it against PPO on Cartpole-V1 environment. We found that DR3 outperforms PPO significantly on this dense reward environment. Our code can be found at https://github.com/chry-santhemum/R3.
Abstract:Most language models currently available are prone to self-contradiction during dialogues. To mitigate this issue, this study explores a novel contradictory dialogue processing task that aims to detect and modify contradictory statements in a conversation. This task is inspired by research on context faithfulness and dialogue comprehension, which have demonstrated that the detection and understanding of contradictions often necessitate detailed explanations. We develop a dataset comprising contradictory dialogues, in which one side of the conversation contradicts itself. Each dialogue is accompanied by an explanatory label that highlights the location and details of the contradiction. With this dataset, we present a Red Teaming framework for contradictory dialogue processing. The framework detects and attempts to explain the dialogue, then modifies the existing contradictory content using the explanation. Our experiments demonstrate that the framework improves the ability to detect contradictory dialogues and provides valid explanations. Additionally, it showcases distinct capabilities for modifying such dialogues. Our study highlights the importance of the logical inconsistency problem in conversational AI.
Abstract:We introduce Blink, a new benchmark for multimodal language models (LLMs) that focuses on core visual perception abilities not found in other evaluations. Most of the Blink tasks can be solved by humans "within a blink" (e.g., relative depth estimation, visual correspondence, forensics detection, and multi-view reasoning). However, we find these perception-demanding tasks cast significant challenges for current multimodal LLMs because they resist mediation through natural language. Blink reformats 14 classic computer vision tasks into 3,807 multiple-choice questions, paired with single or multiple images and visual prompting. While humans get 95.70% accuracy on average, Blink is surprisingly challenging for existing multimodal LLMs: even the best-performing GPT-4V and Gemini achieve accuracies of 51.26% and 45.72%, only 13.17% and 7.63% higher than random guessing, indicating that such perception abilities have not "emerged" yet in recent multimodal LLMs. Our analysis also highlights that specialist CV models could solve these problems much better, suggesting potential pathways for future improvements. We believe Blink will stimulate the community to help multimodal LLMs catch up with human-level visual perception.
Abstract:Despite the recent advancement in large language models (LLMs) and their high performances across numerous benchmarks, recent research has unveiled that LLMs suffer from hallucinations and unfaithful reasoning. This work studies a specific type of hallucination induced by semantic associations. Specifically, we investigate to what extent LLMs take shortcuts from certain keyword/entity biases in the prompt instead of following the correct reasoning path. To quantify this phenomenon, we propose a novel probing method and benchmark called EureQA. We start from questions that LLMs will answer correctly with utmost certainty, and mask the important entity with evidence sentence recursively, asking models to find masked entities according to a chain of evidence before answering the question. During the construction of the evidence, we purposefully replace semantic clues (entities) that may lead to the correct answer with distractor clues (evidence) that will not directly lead to the correct answer but require a chain-like reasoning process. We evaluate if models can follow the correct reasoning chain instead of short-cutting through distractor clues. We find that existing LLMs lack the necessary capabilities to follow correct reasoning paths and resist the attempt of greedy shortcuts. We show that the distractor semantic associations often lead to model hallucination, which is strong evidence that questions the validity of current LLM reasoning.
Abstract:Storytelling's captivating potential makes it a fascinating research area, with implications for entertainment, education, therapy, and cognitive studies. In this paper, we propose Affective Story Generator (AffGen) for generating interesting narratives. AffGen introduces "intriguing twists" in narratives by employing two novel techniques-Dynamic Beam Sizing and Affective Reranking. Dynamic Beam Sizing encourages less predictable, more captivating word choices using a contextual multi-arm bandit model. Affective Reranking prioritizes sentence candidates based on affect intensity. Our empirical evaluations, both automatic and human, demonstrate AffGen's superior performance over existing baselines in generating affectively charged and interesting narratives. Our ablation study and analysis provide insights into the strengths and weaknesses of AffGen.
Abstract:The entity typing task aims at predicting one or more words or phrases that describe the type(s) of a specific mention in a sentence. Due to shortcuts from surface patterns to annotated entity labels and biased training, existing entity typing models are subject to the problem of spurious correlations. To comprehensively investigate the faithfulness and reliability of entity typing methods, we first systematically define distinct kinds of model biases that are reflected mainly from spurious correlations. Particularly, we identify six types of existing model biases, including mention-context bias, lexical overlapping bias, named entity bias, pronoun bias, dependency bias, and overgeneralization bias. To mitigate these model biases, we then introduce a counterfactual data augmentation method. By augmenting the original training set with their bias-free counterparts, models are forced to fully comprehend the sentences and discover the fundamental cues for entity typing, rather than relying on spurious correlations for shortcuts. Experimental results on the UFET dataset show that our counterfactual data augmentation approach helps improve generalization of different entity typing models with consistently better performance on both in- and out-of-distribution test sets.
Abstract:Semantic typing aims at classifying tokens or spans of interest in a textual context into semantic categories such as relations, entity types, and event types. The inferred labels of semantic categories meaningfully interpret how machines understand components of text. In this paper, we present UniST, a unified framework for semantic typing that captures label semantics by projecting both inputs and labels into a joint semantic embedding space. To formulate different lexical and relational semantic typing tasks as a unified task, we incorporate task descriptions to be jointly encoded with the input, allowing UniST to be adapted to different tasks without introducing task-specific model components. UniST optimizes a margin ranking loss such that the semantic relatedness of the input and labels is reflected from their embedding similarity. Our experiments demonstrate that UniST achieves strong performance across three semantic typing tasks: entity typing, relation classification and event typing. Meanwhile, UniST effectively transfers semantic knowledge of labels and substantially improves generalizability on inferring rarely seen and unseen types. In addition, multiple semantic typing tasks can be jointly trained within the unified framework, leading to a single compact multi-tasking model that performs comparably to dedicated single-task models, while offering even better transferability.
Abstract:The task of ultra-fine entity typing (UFET) seeks to predict diverse and free-form words or phrases that describe the appropriate types of entities mentioned in sentences. A key challenge for this task lies in the large amount of types and the scarcity of annotated data per type. Existing systems formulate the task as a multi-way classification problem and train directly or distantly supervised classifiers. This causes two issues: (i) the classifiers do not capture the type semantics since types are often converted into indices; (ii) systems developed in this way are limited to predicting within a pre-defined type set, and often fall short of generalizing to types that are rarely seen or unseen in training. This work presents LITE, a new approach that formulates entity typing as a natural language inference (NLI) problem, making use of (i) the indirect supervision from NLI to infer type information meaningfully represented as textual hypotheses and alleviate the data scarcity issue, as well as (ii) a learning-to-rank objective to avoid the pre-defining of a type set. Experiments show that, with limited training data, LITE obtains state-of-the-art performance on the UFET task. In addition, LITE demonstrates its strong generalizability, by not only yielding best results on other fine-grained entity typing benchmarks, more importantly, a pre-trained LITE system works well on new data containing unseen types.
Abstract:To combat COVID-19, clinicians and scientists all need to digest the vast amount of relevant biomedical knowledge in literature to understand the disease mechanism and the related biological functions. We have developed a novel and comprehensive knowledge discovery framework, COVID-KG, which leverages novel semantic representation and external ontologies to represent text and images in the input literature data, and then performs various extraction components to extract fine-grained multimedia knowledge elements (entities, relations and events). We then exploit the constructed multimedia KGs for question answering and report generation, using drug repurposing as a case study. Our framework also provides detailed contextual sentences, subfigures and knowledge subgraphs as evidence. All of the data, KGs, resources, and shared services are publicly available.