Large language models (LLMs) have demonstrated strong performance on medical benchmarks, including question answering and diagnosis. To enable their use in clinical settings, LLMs are typically further adapted through continued pretraining or post-training using clinical data. However, most medical LLMs are trained on data from a single institution, which faces limitations in generalizability and safety in heterogeneous systems. Federated learning (FL) is a promising solution for enabling collaborative model development across healthcare institutions. Yet applying FL to LLMs in medicine remains fundamentally limited. First, conventional FL requires transmitting the full model during each communication round, which becomes impractical for multi-billion-parameter LLMs given the limited computational resources. Second, many FL algorithms implicitly assume data homogeneity, whereas real-world clinical data are highly heterogeneous across patients, diseases, and institutional practices. We introduce the model-agnostic and parameter-efficient federated learning framework for adapting LLMs to medical applications. Fed-MedLoRA transmits only low-rank adapter parameters, reducing communication and computation overhead, while Fed-MedLoRA+ further incorporates adaptive, data-aware aggregation to improve convergence under cross-site heterogeneity. We apply the framework to clinical information extraction (IE), which transforms patient narratives into structured medical entities and relations. Accuracy was assessed across five patient cohorts through comparisons with BERT models, and LLaMA-3 and DeepSeek-R1, GPT-4o models. Evaluation settings included (1) in-domain training and testing, (2) external validation on independent cohorts, and (3) a low-resource new-site adaptation scenario using real-world clinical notes from the Yale New Haven Health System.
Radiomics enables quantitative medical image analysis by converting imaging data into structured, high-dimensional feature representations for predictive modeling. Despite methodological developments and encouraging retrospective results, radiomics continue to face persistent challenges related to feature instability, limited reproducibility, validation bias, and restricted clinical translation. Existing reviews largely focus on application-specific outcomes or isolated pipeline components, with limited analysis of how interdependent design choices across acquisition, preprocessing, feature engineering, modeling, and evaluation collectively affect robustness and generalizability. This survey provides an end-to-end analysis of radiomics pipelines, examining how methodological decisions at each stage influence feature stability, model reliability, and translational validity. This paper reviews radiomic feature extraction, selection, and dimensionality reduction strategies; classical machine and deep learning-based modeling approaches; and ensemble and hybrid frameworks, with emphasis on validation protocols, data leakage prevention, and statistical reliability. Clinical applications are discussed with a focus on evaluation rigor rather than reported performance metrics. The survey identifies open challenges in standardization, domain shift, and clinical deployment, and outlines future directions such as hybrid radiomics-artificial intelligence models, multimodal fusion, federated learning, and standardized benchmarking.
Graph-based retrieval-augmented generation (GraphRAG) systems construct knowledge graphs over document collections to support multi-hop reasoning. While prior work shows that GraphRAG responses may leak retrieved subgraphs, the feasibility of query-efficient reconstruction of the hidden graph structure remains unexplored under realistic query budgets. We study a budget-constrained black-box setting where an adversary adaptively queries the system to steal its latent entity-relation graph. We propose AGEA (Agentic Graph Extraction Attack), a framework that leverages a novelty-guided exploration-exploitation strategy, external graph memory modules, and a two-stage graph extraction pipeline combining lightweight discovery with LLM-based filtering. We evaluate AGEA on medical, agriculture, and literary datasets across Microsoft-GraphRAG and LightRAG systems. Under identical query budgets, AGEA significantly outperforms prior attack baselines, recovering up to 90% of entities and relationships while maintaining high precision. These results demonstrate that modern GraphRAG systems are highly vulnerable to structured, agentic extraction attacks, even under strict query limits.
Digital twins -- virtual replicas of physical entities -- are gaining traction in healthcare for personalized monitoring, predictive modeling, and clinical decision support. However, generating interoperable patient digital twins from unstructured electronic health records (EHRs) remains challenging due to variability in clinical documentation and lack of standardized mappings. This paper presents a semantic NLP-driven pipeline that transforms free-text EHR notes into FHIR-compliant digital twin representations. The pipeline leverages named entity recognition (NER) to extract clinical concepts, concept normalization to map entities to SNOMED-CT or ICD-10, and relation extraction to capture structured associations between conditions, medications, and observations. Evaluation on MIMIC-IV Clinical Database Demo with validation against MIMIC-IV-on-FHIR reference mappings demonstrates high F1-scores for entity and relation extraction, with improved schema completeness and interoperability compared to baseline methods.
The teleoperation of robotic hands is limited by the high costs of depth cameras and sensor gloves, commonly used to estimate hand relative joint positions (XYZ). We present a novel, cost-effective approach using three webcams for triangulation-based tracking to approximate relative joint angles (theta) of human fingers. We also introduce a modified DexHand, a low-cost robotic hand from TheRobotStudio, to demonstrate THETA's real-time application. Data collection involved 40 distinct hand gestures using three 640x480p webcams arranged at 120-degree intervals, generating over 48,000 RGB images. Joint angles were manually determined by measuring midpoints of the MCP, PIP, and DIP finger joints. Captured RGB frames were processed using a DeepLabV3 segmentation model with a ResNet-50 backbone for multi-scale hand segmentation. The segmented images were then HSV-filtered and fed into THETA's architecture, consisting of a MobileNetV2-based CNN classifier optimized for hierarchical spatial feature extraction and a 9-channel input tensor encoding multi-perspective hand representations. The classification model maps segmented hand views into discrete joint angles, achieving 97.18% accuracy, 98.72% recall, F1 Score of 0.9274, and a precision of 0.8906. In real-time inference, THETA captures simultaneous frames, segments hand regions, filters them, and compiles a 9-channel tensor for classification. Joint-angle predictions are relayed via serial to an Arduino, enabling the DexHand to replicate hand movements. Future research will increase dataset diversity, integrate wrist tracking, and apply computer vision techniques such as OpenAI-Vision. THETA potentially ensures cost-effective, user-friendly teleoperation for medical, linguistic, and manufacturing applications.
The integration of Large Language Models (LLMs) into biomedical research offers new opportunities for domainspecific reasoning and knowledge representation. However, their performance depends heavily on the semantic quality of training data. In oncology, where precision and interpretability are vital, scalable methods for constructing structured knowledge bases are essential for effective fine-tuning. This study presents a pipeline for developing a lung cancer knowledge base using Open Information Extraction (OpenIE). The process includes: (1) identifying medical concepts with the MeSH thesaurus; (2) filtering open-access PubMed literature with permissive licenses (CC0); (3) extracting (subject, relation, object) triplets using OpenIE method; and (4) enriching triplet sets with Named Entity Recognition (NER) to ensure biomedical relevance. The resulting triplet sets provide a domain-specific, large-scale, and noise-aware resource for fine-tuning LLMs. We evaluated T5 models finetuned on this dataset through Supervised Semantic Fine-Tuning. Comparative assessments with ROUGE and BERTScore show significantly improved performance and semantic coherence, demonstrating the potential of OpenIE-derived resources as scalable, low-cost solutions for enhancing biomedical NLP.
AI co-scientists are emerging as a tool to assist human researchers in achieving their research goals. A crucial feature of these AI co-scientists is the ability to generate a research plan given a set of aims and constraints. The plan may be used by researchers for brainstorming, or may even be implemented after further refinement. However, language models currently struggle to generate research plans that follow all constraints and implicit requirements. In this work, we study how to leverage the vast corpus of existing research papers to train language models that generate better research plans. We build a scalable, diverse training corpus by automatically extracting research goals and goal-specific grading rubrics from papers across several domains. We then train models for research plan generation via reinforcement learning with self-grading. A frozen copy of the initial policy acts as the grader during training, with the rubrics creating a generator-verifier gap that enables improvements without external human supervision. To validate this approach, we conduct a study with human experts for machine learning research goals, spanning 225 hours. The experts prefer plans generated by our finetuned Qwen3-30B-A3B model over the initial model for 70% of research goals, and approve 84% of the automatically extracted goal-specific grading rubrics. To assess generality, we also extend our approach to research goals from medical papers, and new arXiv preprints, evaluating with a jury of frontier models. Our finetuning yields 12-22% relative improvements and significant cross-domain generalization, proving effective even in problem settings like medical research where execution feedback is infeasible. Together, these findings demonstrate the potential of a scalable, automated training recipe as a step towards improving general AI co-scientists.
Modern vision--language models (VLMs) are increasingly used to interpret and generate educational content, yet their semantic outputs remain challenging to verify, reproduce, and audit over time. Inconsistencies across model families, inference settings, and computing environments undermine the reliability of AI-generated instructional material, particularly in high-stakes and quantitative STEM domains. This work introduces SlideChain, a blockchain-backed provenance framework designed to provide verifiable integrity for multimodal semantic extraction at scale. Using the SlideChain Slides Dataset-a curated corpus of 1,117 medical imaging lecture slides from a university course-we extract concepts and relational triples from four state-of-the-art VLMs and construct structured provenance records for every slide. SlideChain anchors cryptographic hashes of these records on a local EVM (Ethereum Virtual Machine)-compatible blockchain, providing tamper-evident auditability and persistent semantic baselines. Through the first systematic analysis of semantic disagreement, cross-model similarity, and lecture-level variability in multimodal educational content, we reveal pronounced cross-model discrepancies, including low concept overlap and near-zero agreement in relational triples on many slides. We further evaluate gas usage, throughput, and scalability under simulated deployment conditions, and demonstrate perfect tamper detection along with deterministic reproducibility across independent extraction runs. Together, these results show that SlideChain provides a practical and scalable step toward trustworthy, verifiable multimodal educational pipelines, supporting long-term auditability, reproducibility, and integrity for AI-assisted instructional systems.
Automating the calculation of clinical risk scores offers a significant opportunity to reduce physician administrative burden and enhance patient care. The current standard for evaluating this capability is MedCalc-Bench, a large-scale dataset constructed using LLM-based feature extraction and rule-based aggregation. However, treating such model-generated benchmarks as static oracles risks enshrining historical model errors as evaluation gold standards, a problem dangerously amplified when these datasets serve as reward signals for Reinforcement Learning (RL). In this work, we propose viewing benchmarks for complex tasks such as clinical score computation as ''in-progress living documents'' that should be periodically re-evaluated as the processes for creating them improve. We introduce a systematic, physician-in-the-loop pipeline that leverages advanced agentic verifiers to audit and relabel MedCalc-Bench, utilizing automated triage to reserve scarce clinician attention for the most contentious instances. Our audit reveals that a notable fraction of original labels diverge from medical ground truth due to extraction errors, calculator logic mismatches, and clinical ambiguity. To study whether this label noise meaningfully impacts downstream RL training, we fine-tune a Qwen3-8B model via Group Relative Policy Optimization (GRPO) and demonstrate that training on corrected labels yields an 8.7% absolute improvement in accuracy over the original baseline -- validating that label noise materially affects model evaluation. These findings underscore that in safety-critical domains, rigorous benchmark maintenance is a prerequisite for genuine model alignment.
This manuscript explores multimodal alignment, translation, fusion, and transference to enhance machine understanding of complex inputs. We organize the work into five chapters, each addressing unique challenges in multimodal machine learning. Chapter 3 introduces Spatial-Reasoning Bert for translating text-based spatial relations into 2D arrangements between clip-arts. This enables effective decoding of spatial language into visual representations, paving the way for automated scene generation aligned with human spatial understanding. Chapter 4 presents a method for translating medical texts into specific 3D locations within an anatomical atlas. We introduce a loss function leveraging spatial co-occurrences of medical terms to create interpretable mappings, significantly enhancing medical text navigability. Chapter 5 tackles translating structured text into canonical facts within knowledge graphs. We develop a benchmark for linking natural language to entities and predicates, addressing ambiguities in text extraction to provide clearer, actionable insights. Chapter 6 explores multimodal fusion methods for compositional action recognition. We propose a method fusing video frames and object detection representations, improving recognition robustness and accuracy. Chapter 7 investigates multimodal knowledge transference for egocentric action recognition. We demonstrate how multimodal knowledge distillation enables RGB-only models to mimic multimodal fusion-based capabilities, reducing computational requirements while maintaining performance. These contributions advance methodologies for spatial language understanding, medical text interpretation, knowledge graph enrichment, and action recognition, enhancing computational systems' ability to process complex, multimodal inputs across diverse applications.