Abstract:Recent advances in Large Vision-Language Models (LVLMs) have significantly improve performance in image comprehension tasks, such as formatted charts and rich-content images. Yet, Graphical User Interface (GUI) pose a greater challenge due to their structured format and detailed textual information. Existing LVLMs often overly depend on internal knowledge and neglect image content, resulting in hallucinations and incorrect responses in GUI comprehension.To address these issues, we introduce VGA, a fine-tuned model designed for comprehensive GUI understanding. Our model aims to enhance the interpretation of visual data of GUI and reduce hallucinations. We first construct a Vision Question Answering (VQA) dataset of 63.8k high-quality examples with our propose Referent Method, which ensures the model's responses are highly depend on visual content within the image. We then design a two-stage fine-tuning method called Foundation and Advanced Comprehension (FAC) to enhance both the model's ability to extract information from image content and alignment with human intent. Experiments show that our approach enhances the model's ability to extract information from images and achieves state-of-the-art results in GUI understanding tasks. Our dataset and fine-tuning script will be released soon.
Abstract:In this paper, state and noise covariance estimation problems for linear system with unknown multiplicative noise are considered. The measurement likelihood is modelled as a mixture of two Gaussian distributions and a Student's $\emph{t}$ distribution, respectively. The unknown covariance of multiplicative noise is modelled as an inverse Gamma/Wishart distribution and the initial condition is formulated as the nominal covariance. By using robust design and choosing hierarchical priors, two variational Bayesian based robust Kalman filters are proposed. Stability and covergence of the proposed filters, the covariance parameters, the VB inference, and the estimation error dynamics are analyzed. The lower and upper bounds are also provided to guarantee the performance of the proposed filters. A target tracking simulation is provided to validate the effectiveness of the proposed filters.