Abstract:In this letter, we propose a novel channel transfer function (CTF) estimation approach for orthogonal frequency division multiplexing (OFDM) systems in high-mobility scenarios, that leverages the stationary properties of the delay-Doppler domain channel spreading function (CSF). First, we develop a CSF estimation model for OFDM systems that relies solely on discrete pilot symbols in the time-frequency (TF) domain, positioned at predefined resource elements. We then present theorems to elucidate the relationship between CSF compactness and pilot spacing in the TF domain for accurate CSF acquisition. Based on the estimated CSF, we finally estimate the CTF for data symbols. Numerical results show that, in high-mobility scenarios, the proposed approach outperforms traditional interpolation-based methods and closely matches the optimal estimator in terms of estimation accuracy. This work may pave the way for CSF estimation in commercial OFDM systems, benefiting high-mobility communications, integrated sensing and communications, and related applications.
Abstract:This paper investigates artificial intelligence (AI) empowered schemes for reconfigurable intelligent surface (RIS) assisted networks from the perspective of fast implementation. We formulate a weighted sum-rate maximization problem for a multi-RIS-assisted network. To avoid huge channel estimation overhead due to activate all RISs, we propose a computer vision (CV) enabled RIS selection scheme based on a single shot multi-box detector. To realize real-time resource allocation, a deep neural network (DNN) enabled transmit design is developed to learn the optimal mapping from channel information to transmit beamformers and phase shift matrix. Numerical results illustrate that the CV module is able to select of RIS with the best propagation condition. The well-trained DNN achieves similar sum-rate performance to the existing alternative optimization method but with much smaller inference time.
Abstract:The emerging 6G network envisions integrated sensing and communication (ISAC) as a promising solution to meet growing demand for native perception ability. To optimize and evaluate ISAC systems and techniques, it is crucial to have an accurate and realistic wireless channel model. However, some important features of ISAC channels have not been well characterized, for example, most existing ISAC channel models consider communication channels and sensing channels independently, whereas ignoring correlation under the consistent environment. Moreover, sensing channels have not been well modeled in the existing standard-level channel models. Therefore, in order to better model ISAC channel, a cluster-based statistical channel model is proposed in this paper, which is based on measurements conducted at 28 GHz. In the proposed model, a new framework based on 3GPP standard is proposed, which includes communication clusters and sensing clusters. Clustering and tracking algorithms are used to extract and analyze ISAC channel characteristics. Furthermore, some special sensing cluster structures such as shared sensing cluster, newborn sensing cluster, etc., are defined to model correlation and difference between communication and sensing channels. Finally, accuracy of the proposed model is validated based on measurements and simulations.
Abstract:Integrated sensing and communications (ISAC) is a potential technology of 6G, aiming to enable end-to-end information processing ability and native perception capability for future communication systems. As an important part of the ISAC application scenarios, ISAC aided vehicle-to-everything (V2X) can improve the traffic efficiency and safety through intercommunication and synchronous perception. It is necessary to carry out measurement, characterization, and modeling for vehicular ISAC channels as the basic theoretical support for system design. In this paper, dynamic vehicular ISAC channel measurements at 28 GHz are carried out and provide data for the characterization of non-stationarity characteristics. Based on the actual measurements, this paper analyzes the time-varying PDPs, RMSDS and non-stationarity characteristics of front, lower front, left and right perception directions in a complicated V2X scenarios. The research in this paper can enrich the investigation of vehicular ISAC channels and enable the analysis and design of vehicular ISAC systems.
Abstract:Integrated sensing and communication (ISAC) is a promising technology for 6G, with the goal of providing end-to-end information processing and inherent perception capabilities for future communication systems. Within ISAC emerging application scenarios, vehicular ISAC technologies have the potential to enhance traffic efficiency and safety through integration of communication and synchronized perception abilities. To establish a foundational theoretical support for vehicular ISAC system design and standardization, it is necessary to conduct channel measurements, and modeling to obtain a deep understanding of the radio propagation. In this paper, a dynamic statistical channel model is proposed for vehicular ISAC scenarios, incorporating Sensing Multipath Components (S-MPCs) and Clutter Multipath Components (C-MPCs), which are identified by the proposed tracking algorithm. Based on actual vehicular ISAC channel measurements at 28 GHz, time-varying sensing characteristics in front, left, and right directions are investigated. To model the dynamic evolution process of channel, number of new S-MPCs, lifetimes, initial power and delay positions, dynamic variations within their lifetimes, clustering, power decay, and fading of C-MPCs are statistically characterized. Finally, the paper provides implementation of dynamic vehicular ISAC model and validates it by comparing key simulation statistics between measurements and simulations.
Abstract:Recently, deep learning enabled semantic communications have been developed to understand transmission content from semantic level, which realize effective and accurate information transfer. Aiming to the vision of sixth generation (6G) networks, wireless devices are expected to have native perception and intelligent capabilities, which associate wireless channel with surrounding environments from physical propagation dimension to semantic information dimension. Inspired by these, we aim to provide a new paradigm on wireless channel from semantic level. A channel semantic model and its characterization framework are proposed in this paper. Specifically, a channel semantic model composes of status semantics, behavior semantics and event semantics. Based on actual channel measurement at 28 GHz, as well as multi-mode data, example results of channel semantic characterization are provided and analyzed, which exhibits reasonable and interpretable semantic information.
Abstract:This two-part paper investigates the application of artificial intelligence (AI) and in particular machine learning (ML) to the study of wireless propagation channels. In Part I, we introduced AI and ML as well as provided a comprehensive survey on ML enabled channel characterization and antenna-channel optimization, and in this part (Part II) we review state-of-the-art literature on scenario identification and channel modeling here. In particular, the key ideas of ML for scenario identification and channel modeling/prediction are presented, and the widely used ML methods for propagation scenario identification and channel modeling and prediction are analyzed and compared. Based on the state-of-art, the future challenges of AI/ML-based channel data processing techniques are given as well.
Abstract:To provide higher data rates, as well as better coverage, cost efficiency, security, adaptability, and scalability, the 5G and beyond 5G networks are developed with various artificial intelligence techniques. In this two-part paper, we investigate the application of artificial intelligence (AI) and in particular machine learning (ML) to the study of wireless propagation channels. It firstly provides a comprehensive overview of ML for channel characterization and ML-based antenna-channel optimization in this first part, and then it gives a state-of-the-art literature review of channel scenario identification and channel modeling in Part II. Fundamental results and key concepts of ML for communication networks are presented, and widely used ML methods for channel data processing, propagation channel estimation, and characterization are analyzed and compared. A discussion of challenges and future research directions for ML-enabled next generation networks of the topics covered in this part rounds off the paper.