Abstract:Integrated sensing and communication (ISAC) is a promising technology for 6G, with the goal of providing end-to-end information processing and inherent perception capabilities for future communication systems. Within ISAC emerging application scenarios, vehicular ISAC technologies have the potential to enhance traffic efficiency and safety through integration of communication and synchronized perception abilities. To establish a foundational theoretical support for vehicular ISAC system design and standardization, it is necessary to conduct channel measurements, and modeling to obtain a deep understanding of the radio propagation. In this paper, a dynamic statistical channel model is proposed for vehicular ISAC scenarios, incorporating Sensing Multipath Components (S-MPCs) and Clutter Multipath Components (C-MPCs), which are identified by the proposed tracking algorithm. Based on actual vehicular ISAC channel measurements at 28 GHz, time-varying sensing characteristics in front, left, and right directions are investigated. To model the dynamic evolution process of channel, number of new S-MPCs, lifetimes, initial power and delay positions, dynamic variations within their lifetimes, clustering, power decay, and fading of C-MPCs are statistically characterized. Finally, the paper provides implementation of dynamic vehicular ISAC model and validates it by comparing key simulation statistics between measurements and simulations.
Abstract:The emerging 6G network envisions integrated sensing and communication (ISAC) as a promising solution to meet growing demand for native perception ability. To optimize and evaluate ISAC systems and techniques, it is crucial to have an accurate and realistic wireless channel model. However, some important features of ISAC channels have not been well characterized, for example, most existing ISAC channel models consider communication channels and sensing channels independently, whereas ignoring correlation under the consistent environment. Moreover, sensing channels have not been well modeled in the existing standard-level channel models. Therefore, in order to better model ISAC channel, a cluster-based statistical channel model is proposed in this paper, which is based on measurements conducted at 28 GHz. In the proposed model, a new framework based on 3GPP standard is proposed, which includes communication clusters and sensing clusters. Clustering and tracking algorithms are used to extract and analyze ISAC channel characteristics. Furthermore, some special sensing cluster structures such as shared sensing cluster, newborn sensing cluster, etc., are defined to model correlation and difference between communication and sensing channels. Finally, accuracy of the proposed model is validated based on measurements and simulations.
Abstract:Recently, deep learning enabled semantic communications have been developed to understand transmission content from semantic level, which realize effective and accurate information transfer. Aiming to the vision of sixth generation (6G) networks, wireless devices are expected to have native perception and intelligent capabilities, which associate wireless channel with surrounding environments from physical propagation dimension to semantic information dimension. Inspired by these, we aim to provide a new paradigm on wireless channel from semantic level. A channel semantic model and its characterization framework are proposed in this paper. Specifically, a channel semantic model composes of status semantics, behavior semantics and event semantics. Based on actual channel measurement at 28 GHz, as well as multi-mode data, example results of channel semantic characterization are provided and analyzed, which exhibits reasonable and interpretable semantic information.
Abstract:Integrated sensing and communications (ISAC) is a potential technology of 6G, aiming to enable end-to-end information processing ability and native perception capability for future communication systems. As an important part of the ISAC application scenarios, ISAC aided vehicle-to-everything (V2X) can improve the traffic efficiency and safety through intercommunication and synchronous perception. It is necessary to carry out measurement, characterization, and modeling for vehicular ISAC channels as the basic theoretical support for system design. In this paper, dynamic vehicular ISAC channel measurements at 28 GHz are carried out and provide data for the characterization of non-stationarity characteristics. Based on the actual measurements, this paper analyzes the time-varying PDPs, RMSDS and non-stationarity characteristics of front, lower front, left and right perception directions in a complicated V2X scenarios. The research in this paper can enrich the investigation of vehicular ISAC channels and enable the analysis and design of vehicular ISAC systems.
Abstract:Interactions between users and videos are the major data source of performing video recommendation. Despite lots of existing recommendation methods, user behaviors on videos, which imply the complex relations between users and videos, are still far from being fully explored. In the paper, we present a model named Sagittarius. Sagittarius adopts a graph convolutional neural network to capture the influence between users and videos. In particular, Sagittarius differentiates between different user behaviors by weighting and fuses the semantics of user behaviors into the embeddings of users and videos. Moreover, Sagittarius combines multiple optimization objectives to learn user and video embeddings and then achieves the video recommendation by the learned user and video embeddings. The experimental results on multiple datasets show that Sagittarius outperforms several state-of-the-art models in terms of recall, unique recall and NDCG.