Abstract:This paper applies graph neural networks (GNN) in UAV communications to optimize the placement and transmission design. We consider a multiple-user multiple-input-single-output UAV communication system where a UAV intends to find a placement to hover and serve users with maximum energy efficiency (EE). To facilitate the GNN-based learning, we adopt the hybrid maximum ratio transmission and zero forcing scheme to design the beamforming vectors and a feature augment is implemented by manually setting edge features. Furthermore, we propose a two-stage GNN-based model where the first stage and the second stage yield the placement and the transmission design, respectively. The two stages are connected via a residual and their learnable weights are jointly optimized by via unsupervised learning. Numerical results illustrate the effectiveness and validate the scalability to both UAV antennas and users of the proposed model.
Abstract:The emerging 6G network envisions integrated sensing and communication (ISAC) as a promising solution to meet growing demand for native perception ability. To optimize and evaluate ISAC systems and techniques, it is crucial to have an accurate and realistic wireless channel model. However, some important features of ISAC channels have not been well characterized, for example, most existing ISAC channel models consider communication channels and sensing channels independently, whereas ignoring correlation under the consistent environment. Moreover, sensing channels have not been well modeled in the existing standard-level channel models. Therefore, in order to better model ISAC channel, a cluster-based statistical channel model is proposed in this paper, which is based on measurements conducted at 28 GHz. In the proposed model, a new framework based on 3GPP standard is proposed, which includes communication clusters and sensing clusters. Clustering and tracking algorithms are used to extract and analyze ISAC channel characteristics. Furthermore, some special sensing cluster structures such as shared sensing cluster, newborn sensing cluster, etc., are defined to model correlation and difference between communication and sensing channels. Finally, accuracy of the proposed model is validated based on measurements and simulations.
Abstract:The concept of age of information (AoI) has been proposed to quantify information freshness, which is crucial for time-sensitive applications. However, in millimeter wave (mmWave) communication systems, the link blockage caused by obstacles and the severe path loss greatly impair the freshness of information received by the user equipments (UEs). In this paper, we focus on reconfigurable intelligent surface (RIS)-assisted mmWave communications, where beamforming is performed at transceivers to provide directional beam gain and a RIS is deployed to combat link blockage. We aim to maximize the system sum rate while satisfying the information freshness requirements of UEs by jointly optimizing the beamforming at transceivers, the discrete RIS reflection coefficients, and the UE scheduling strategy. To facilitate a practical solution, we decompose the problem into two subproblems. For the first per-UE data rate maximization problem, we further decompose it into a beamforming optimization subproblem and a RIS reflection coefficient optimization subproblem. Considering the difficulty of channel estimation, we utilize the hierarchical search method for the former and the local search method for the latter, and then adopt the block coordinate descent (BCD) method to alternately solve them. For the second scheduling strategy design problem, a low-complexity heuristic scheduling algorithm is designed. Simulation results show that the proposed algorithm can effectively improve the system sum rate while satisfying the information freshness requirements of all UEs.
Abstract:Reconfigurable intelligent surface (RIS) emerges as an efficient and promising technology for the next wireless generation networks and has attracted a lot of attention owing to the capability of extending wireless coverage by reflecting signals toward targeted receivers. In this paper, we consider a RIS-assisted high-speed train (HST) communication system to enhance wireless coverage and improve coverage probability. First, coverage performance of the downlink single-input-single-output system is investigated, and the closed-form expression of coverage probability is derived. Moreover, travel distance maximization problem is formulated to facilitate RIS discrete phase design and RIS placement optimization, which is subject to coverage probability constraint. Simulation results validate that better coverage performance and higher travel distance can be achieved with deployment of RIS. The impacts of some key system parameters including transmission power, signal-to-noise ratio threshold, number of RIS elements, number of RIS quantization bits, horizontal distance between base station and RIS, and speed of HST on system performance are investigated. In addition, it is found that RIS can well improve coverage probability with limited power consumption for HST communications.
Abstract:One technology that has the potential to improve wireless communications in years to come is integrated sensing and communication (ISAC). In this study, we take advantage of reconfigurable intelligent surface's (RIS) potential advantages to achieve ISAC while using the same frequency and resources. Specifically, by using the reflecting elements, the RIS dynamically modifies the radio waves' strength or phase in order to change the environment for radio transmission and increase the ISAC systems' transmission rate. We investigate a single cell downlink communication situation with RIS assistance. Combining the ISAC base station's (BS) beamforming with RIS's discrete phase shift optimization, while guaranteeing the sensing signal, The aim of optimizing the sum rate is specified. We take advantage of alternating maximization to find practical solutions with dividing the challenge into two minor issues. The first power allocation subproblem is non-convex that CVX solves by converting it to convex. A local search strategy is used to solve the second subproblem of phase shift optimization. According to the results of the simulation, using RIS with adjusted phase shifts can significantly enhance the ISAC system's performance.
Abstract:This paper investigates the system model and the transmit beamforming design for the Cell-Free massive multi-input multi-output (MIMO) integrated sensing and communication (ISAC) system. The impact of the uncertainty of the target locations on the propagation of wireless signals is considered during both uplink and downlink phases, and especially, the main statistics of the MIMO channel estimation error are theoretically derived in the closed-form fashion. A fundamental performance metric, termed communication-sensing (C-S) region, is defined for the considered system via three cases, i.e., the sensing-only case, the communication-only case and the ISAC case. The transmit beamforming design problems for the three cases are respectively carried out through different reformulations, e.g., the Lagrangian dual transform and the quadratic fractional transform, and some combinations of the block coordinate descent method and the successive convex approximation method. Numerical results present a 3-dimensional C-S region with a dynamic number of access points to illustrate the trade-off between communication and radar sensing. The advantage for radar sensing of the Cell-Free massive MIMO system is also studied via a comparison with the traditional cellular system. Finally, the efficacy of the proposed beamforming scheme is validated in comparison with zero-forcing and maximum ratio transmission schemes.
Abstract:The terahertz (THz) band (0.1-10 THz) is widely considered to be a candidate band for the sixth-generation mobile communication technology (6G). However, due to its short wavelength (less than 1 mm), scattering becomes a particularly significant propagation mechanism. In previous studies, we proposed a scattering model to characterize the scattering in THz bands, which can only reconstruct the scattering in the incidence plane. In this paper, a three-dimensional (3D) stochastic model is proposed to characterize the THz scattering on rough surfaces. Then, we reconstruct the scattering on rough surfaces with different shapes and under different incidence angles utilizing the proposed model. Good agreements can be achieved between the proposed model and full-wave simulation results. This stochastic 3D scattering model can be integrated into the standard channel modeling framework to realize more realistic THz channel data for the evaluation of 6G.
Abstract:Mobile channel modeling has always been the core part for design, deployment and optimization of communication system, especially in 5G and beyond era. Deterministic channel modeling could precisely achieve mobile channel description, however with defects of equipment and time consuming. In this paper, we proposed a novel super resolution (SR) model for cluster characteristics prediction. The model is based on deep neural networks with residual connection. A series of simulations at 3.5 GHz are conducted by a three-dimensional ray tracing (RT) simulator in diverse scenarios. Cluster characteristics are extracted and corresponding data sets are constructed to train the model. Experiments demonstrate that the proposed SR approach could achieve better power and cluster location prediction performance than traditional interpolation method and the root mean square error (RMSE) drops by 51% and 78% relatively. Channel impulse response (CIR) is reconstructed based on cluster characteristics, which could match well with the multi-path component (MPC). The proposed method can be used to efficiently and accurately generate big data of mobile channel, which significantly reduces the computation time of RT-only.
Abstract:Reconfigurable intelligent surface (RIS) has received increasing attention due to its capability of extending cell coverage by reflecting signals toward receivers. This paper considers a RIS-assisted high-speed train (HST) communication system to improve the coverage probability. We derive the closed-form expression of coverage probability. Moreover, we analyze impacts of some key system parameters, including transmission power, signal-to-noise ratio threshold, and horizontal distance between base station and RIS. Simulation results verify the efficiency of RIS-assisted HST communications in terms of coverage probability.
Abstract:This two-part paper investigates the application of artificial intelligence (AI) and in particular machine learning (ML) to the study of wireless propagation channels. In Part I, we introduced AI and ML as well as provided a comprehensive survey on ML enabled channel characterization and antenna-channel optimization, and in this part (Part II) we review state-of-the-art literature on scenario identification and channel modeling here. In particular, the key ideas of ML for scenario identification and channel modeling/prediction are presented, and the widely used ML methods for propagation scenario identification and channel modeling and prediction are analyzed and compared. Based on the state-of-art, the future challenges of AI/ML-based channel data processing techniques are given as well.