Abstract:High-speed trains are one of the most relevant scenarios for the fifth-generation (5G) mobile communications and the "smart rail mobility" vision, where a high-data-rate wireless connectivity with up to several GHz bandwidths will be required. This is a strong motivation for the exploration of millimeter wave (mmWave) band. In this article, we identify the main challenges and make progress towards realistic 5G mmWave channel models for railway use cases. In order to cope with the challenge of including the railway features in the channel models, we define reference scenarios to help the parameterization of channel models for railway use at mmWave band. Simulations and the subsequent measurements used to validate the model reflect the detailed influence of railway objects and the accuracy of the simulations. Finally, we point out the future directions towards the full version of the smart rail mobility which will be powered by terahertz (THz) communications.
Abstract:In the design of unmanned aerial vehicle (UAV) wireless communications, a better understanding of propagation characteristics and an accurate channel model are required. Measurements and comprehensive analysis for the UAV-based air-ground (AG) propagation channel in the vertical dimension are presented in this letter. Based on the measurement data at 1 and 4 GHz, the large-scale and small-scale channel parameters are extracted in the line-of-sight (LOS) and nonLOS case, respectively. The altitude-dependent path loss model is proposed herein. Furthermore, shadow fading and fast fading are statistically analyzed for comprehensively describing the fading behavior. Our results will be useful in the modeling of AG channels and the performance analysis for UAV-enabled wireless communication systems.