Recently, deep learning enabled semantic communications have been developed to understand transmission content from semantic level, which realize effective and accurate information transfer. Aiming to the vision of sixth generation (6G) networks, wireless devices are expected to have native perception and intelligent capabilities, which associate wireless channel with surrounding environments from physical propagation dimension to semantic information dimension. Inspired by these, we aim to provide a new paradigm on wireless channel from semantic level. A channel semantic model and its characterization framework are proposed in this paper. Specifically, a channel semantic model composes of status semantics, behavior semantics and event semantics. Based on actual channel measurement at 28 GHz, as well as multi-mode data, example results of channel semantic characterization are provided and analyzed, which exhibits reasonable and interpretable semantic information.