Abstract:We investigate a critical yet under-explored question in Large Vision-Language Models (LVLMs): Do LVLMs genuinely comprehend interleaved image-text in the document? Existing document understanding benchmarks often assess LVLMs using question-answer formats, which are information-sparse and difficult to guarantee the coverage of long-range dependencies. To address this issue, we introduce a novel and challenging Multimodal Document Summarization Benchmark (M-DocSum-Bench), which comprises 500 high-quality arXiv papers, along with interleaved multimodal summaries aligned with human preferences. M-DocSum-Bench is a reference-based generation task and necessitates the generation of interleaved image-text summaries using provided reference images, thereby simultaneously evaluating capabilities in understanding, reasoning, localization, and summarization within complex multimodal document scenarios. To facilitate this benchmark, we develop an automated framework to construct summaries and propose a fine-grained evaluation method called M-DocEval. Moreover, we further develop a robust summarization baseline, i.e., M-DocSum-7B, by progressive two-stage training with diverse instruction and preference data. The extensive results on our M-DocSum-Bench reveal that the leading LVLMs struggle to maintain coherence and accurately integrate information within long and interleaved contexts, often exhibiting confusion between similar images and a lack of robustness. Notably, M-DocSum-7B achieves state-of-the-art performance compared to larger and closed-source models (including GPT-4o, Gemini Pro, Claude-3.5-Sonnet and Qwen2.5-VL-72B, etc.), demonstrating the potential of LVLMs for improved interleaved image-text understanding. The code, data, and models are available at https://github.com/stepfun-ai/M-DocSum-Bench.
Abstract:Due to its high speed and low latency, DVS is frequently employed in motion deblurring. Ideally, high-quality events would adeptly capture intricate motion information. However, real-world events are generally degraded, thereby introducing significant artifacts into the deblurred results. In response to this challenge, we model the degradation of events and propose RDNet to improve the quality of image deblurring. Specifically, we first analyze the mechanisms underlying degradation and simulate paired events based on that. These paired events are then fed into the first stage of the RDNet for training the restoration model. The events restored in this stage serve as a guide for the second-stage deblurring process. To better assess the deblurring performance of different methods on real-world degraded events, we present a new real-world dataset named DavisMCR. This dataset incorporates events with diverse degradation levels, collected by manipulating environmental brightness and target object contrast. Our experiments are conducted on synthetic datasets (GOPRO), real-world datasets (REBlur), and the proposed dataset (DavisMCR). The results demonstrate that RDNet outperforms classical event denoising methods in event restoration. Furthermore, RDNet exhibits better performance in deblurring tasks compared to state-of-the-art methods. DavisMCR are available at https://github.com/Yeeesir/DVS_RDNet.