Abstract:The insufficient supervision limit the performance of the deep supervised models for brain disease diagnosis. It is important to develop a learning framework that can capture more information in limited data and insufficient supervision. To address these issues at some extend, we propose a multi-stage graph learning framework which incorporates 1) pretrain stage : self-supervised graph learning on insufficient supervision of the fmri data 2) fine-tune stage : supervised graph learning for brain disorder diagnosis. Experiment results on three datasets, Autism Brain Imaging Data Exchange ABIDE I, ABIDE II and ADHD with AAL1,demonstrating the superiority and generalizability of the proposed framework compared to the state of art of models.(ranging from 0.7330 to 0.9321,0.7209 to 0.9021,0.6338 to 0.6699)
Abstract:Evaluating the performance of Simultaneous Localization and Mapping (SLAM) algorithms is essential for scientists and users of robotic systems alike. But there are a multitude different permutations of possible options of hardware setups and algorithm configurations, as well as different datasets and algorithms, such that it is infeasible to thoroughly compare SLAM systems against the full state of the art. To solve that we present the SLAM Hive Benchmarking Suite, which is able to analyze SLAM algorithms in thousands of mapping runs, through its utilization of container technology and deployment in the cloud. This paper presents the architecture and open source implementation of SLAM Hive and compares it to existing efforts on SLAM evaluation. We perform mapping runs of many of the most popular visual and LiDAR based SLAM algorithms against commonly used datasets and show how SLAM Hive and then be used to conveniently analyze the results against various aspects. Through this we envision that SLAM Hive can become an essential tool for proper comparisons and evaluations of SLAM algorithms and thus drive the scientific development in the research on SLAM. The open source software as well as a demo to show the live analysis of 100s of mapping runs can be found on our SLAM Hive website.
Abstract:This paper presents the ShanghaiTech Mapping Robot, a state-of-the-art unmanned ground vehicle (UGV) designed for collecting comprehensive multi-sensor datasets to support research in robotics, computer vision, and autonomous driving. The robot is equipped with a wide array of sensors including RGB cameras, RGB-D cameras, event-based cameras, IR cameras, LiDARs, mmWave radars, IMUs, ultrasonic range finders, and a GNSS RTK receiver. The sensor suite is integrated onto a specially designed mechanical structure with a centralized power system and a synchronization mechanism to ensure spatial and temporal alignment of the sensor data. A 16-node on-board computing cluster handles sensor control, data collection, and storage. We describe the hardware and software architecture of the robot in detail and discuss the calibration procedures for the various sensors. The capabilities of the platform are demonstrated through an extensive dataset collected in diverse real-world environments. To facilitate research, we make the dataset publicly available along with the associated robot sensor calibration data. Performance evaluations on a set of standard perception and localization tasks showcase the potential of the dataset to support developments in Robot Autonomy.
Abstract:Accurate prediction of financial time series is a key concern for market economy makers and investors. The article selects online store sales and Australian beer sales as representatives of non-stationary, trending, and seasonal financial time series, and constructs a new SGVMD-ARIMA combination model in a non-linear combination way to predict financial time series. The ARIMA model, LSTM model, and other classic decomposition prediction models are used as control models to compare the accuracy of different models. The empirical results indicate that the constructed combination prediction model has universal advantages over the single prediction model and linear combination prediction model of the control group. Within the prediction interval, our proposed combination model has improved advantages over traditional decomposition prediction control group models.
Abstract:The intrinsic alignments (IA) of galaxies, regarded as a contaminant in weak lensing analyses, represents the correlation of galaxy shapes due to gravitational tidal interactions and galaxy formation processes. As such, understanding IA is paramount for accurate cosmological inferences from weak lensing surveys; however, one limitation to our understanding and mitigation of IA is expensive simulation-based modeling. In this work, we present a deep learning approach to emulate galaxy position-position ($\xi$), position-orientation ($\omega$), and orientation-orientation ($\eta$) correlation function measurements and uncertainties from halo occupation distribution-based mock galaxy catalogs. We find strong Pearson correlation values with the model across all three correlation functions and further predict aleatoric uncertainties through a mean-variance estimation training procedure. $\xi(r)$ predictions are generally accurate to $\leq10\%$. Our model also successfully captures the underlying signal of the noisier correlations $\omega(r)$ and $\eta(r)$, although with a lower average accuracy. We find that the model performance is inhibited by the stochasticity of the data, and will benefit from correlations averaged over multiple data realizations. Our code will be made open source upon journal publication.
Abstract:In this paper, we consider a heavy inner product identification problem, which generalizes the Light Bulb problem~(\cite{prr89}): Given two sets $A \subset \{-1,+1\}^d$ and $B \subset \{-1,+1\}^d$ with $|A|=|B| = n$, if there are exact $k$ pairs whose inner product passes a certain threshold, i.e., $\{(a_1, b_1), \cdots, (a_k, b_k)\} \subset A \times B$ such that $\forall i \in [k], \langle a_i,b_i \rangle \geq \rho \cdot d$, for a threshold $\rho \in (0,1)$, the goal is to identify those $k$ heavy inner products. We provide an algorithm that runs in $O(n^{2 \omega / 3+ o(1)})$ time to find the $k$ inner product pairs that surpass $\rho \cdot d$ threshold with high probability, where $\omega$ is the current matrix multiplication exponent. By solving this problem, our method speed up the training of neural networks with ReLU activation function.
Abstract:We introduce and study the problem of dueling optimization with a monotone adversary, which is a generalization of (noiseless) dueling convex optimization. The goal is to design an online algorithm to find a minimizer $\mathbf{x}^{*}$ for a function $f\colon X \to \mathbb{R}$, where $X \subseteq \mathbb{R}^d$. In each round, the algorithm submits a pair of guesses, i.e., $\mathbf{x}^{(1)}$ and $\mathbf{x}^{(2)}$, and the adversary responds with any point in the space that is at least as good as both guesses. The cost of each query is the suboptimality of the worse of the two guesses; i.e., ${\max} \left( f(\mathbf{x}^{(1)}), f(\mathbf{x}^{(2)}) \right) - f(\mathbf{x}^{*})$. The goal is to minimize the number of iterations required to find an $\varepsilon$-optimal point and to minimize the total cost (regret) of the guesses over many rounds. Our main result is an efficient randomized algorithm for several natural choices of the function $f$ and set $X$ that incurs cost $O(d)$ and iteration complexity $O(d\log(1/\varepsilon)^2)$. Moreover, our dependence on $d$ is asymptotically optimal, as we show examples in which any randomized algorithm for this problem must incur $\Omega(d)$ cost and iteration complexity.
Abstract:Benefiting from the rapid development of deep learning, 2D and 3D computer vision applications are deployed in many safe-critical systems, such as autopilot and identity authentication. However, deep learning models are not trustworthy enough because of their limited robustness against adversarial attacks. The physically realizable adversarial attacks further pose fatal threats to the application and human safety. Lots of papers have emerged to investigate the robustness and safety of deep learning models against adversarial attacks. To lead to trustworthy AI, we first construct a general threat model from different perspectives and then comprehensively review the latest progress of both 2D and 3D adversarial attacks. We extend the concept of adversarial examples beyond imperceptive perturbations and collate over 170 papers to give an overview of deep learning model robustness against various adversarial attacks. To the best of our knowledge, we are the first to systematically investigate adversarial attacks for 3D models, a flourishing field applied to many real-world applications. In addition, we examine physical adversarial attacks that lead to safety violations. Last but not least, we summarize present popular topics, give insights on challenges, and shed light on future research on trustworthy AI.
Abstract:Microseismic event detection and location are two primary components in microseismic monitoring, which offers us invaluable insights into the subsurface during reservoir stimulation and evolution. Conventional approaches for event detection and location often suffer from manual intervention and/or heavy computation, while current machine learning-assisted approaches typically address detection and location separately; such limitations hinder the potential for real-time microseismic monitoring. We propose an approach to unify event detection and source location into a single framework by adapting a Convolutional Neural Network backbone and an encoder-decoder Transformer with a set-based Hungarian loss, which is applied directly to recorded waveforms. The proposed network is trained on synthetic data simulating multiple microseismic events corresponding to random source locations in the area of suspected microseismic activities. A synthetic test on a 2D profile of the SEAM Time Lapse model illustrates the capability of the proposed method in detecting the events properly and locating them in the subsurface accurately; while, a field test using the Arkoma Basin data further proves its practicability, efficiency, and its potential in paving the way for real-time monitoring of microseismic events.
Abstract:Deep learning has been widely used in many fields, but the model training process usually consumes massive computational resources and time. Therefore, designing an efficient neural network training method with a provable convergence guarantee is a fundamental and important research question. In this paper, we present a static half-space report data structure that consists of a fully connected two-layer neural network for shifted ReLU activation to enable activated neuron identification in sublinear time via geometric search. We also prove that our algorithm can converge in $O(M^2/\epsilon^2)$ time with network size quadratic in the coefficient norm upper bound $M$ and error term $\epsilon$.