Centre for Medical Research, The University of Western Australia, Perth, Australia
Abstract:Diagnostic investigation has an important role in risk stratification and clinical decision making of patients with suspected and documented Coronary Artery Disease (CAD). However, the majority of existing tools are primarily focused on the selection of gatekeeper tests, whereas only a handful of systems contain information regarding the downstream testing or treatment. We propose a multi-task deep learning model to support risk stratification and down-stream test selection for patients undergoing Coronary Computed Tomography Angiography (CCTA). The analysis included 14,021 patients who underwent CCTA between 2006 and 2017. Our novel multitask deep learning framework extends the state-of-the art Perceiver model to deal with real-world CCTA report data. Our model achieved an Area Under the receiver operating characteristic Curve (AUC) of 0.76 in CAD risk stratification, and 0.72 AUC in predicting downstream tests. Our proposed deep learning model can accurately estimate the likelihood of CAD and provide recommended downstream tests based on prior CCTA data. In clinical practice, the utilization of such an approach could bring a paradigm shift in risk stratification and downstream management. Despite significant progress using deep learning models for tabular data, they do not outperform gradient boosting decision trees, and further research is required in this area. However, neural networks appear to benefit more readily from multi-task learning than tree-based models. This could offset the shortcomings of using single task learning approach when working with tabular data.
Abstract:We explore two differentiable deep declarative layers, namely least squares on sphere (LESS) and implicit eigen decomposition (IED), for learning the principal matrix features (PMaF). It can be used to represent data features with a low-dimensional vector containing dominant information from a high-dimensional matrix. We first solve the problems with iterative optimization in the forward pass and then backpropagate the solution for implicit gradients under a bi-level optimization framework. Particularly, adaptive descent steps with the backtracking line search method and descent decay in the tangent space are studied to improve the forward pass efficiency of LESS. Meanwhile, exploited data structures are used to greatly reduce the computational complexity in the backward pass of LESS and IED. Empirically, we demonstrate the superiority of our layers over the off-the-shelf baselines by comparing the solution optimality and computational requirements.
Abstract:We explore conditions for when the gradient of a deep declarative node can be approximated by ignoring constraint terms and still result in a descent direction for the global loss function. This has important practical application when training deep learning models since the approximation is often computationally much more efficient than the true gradient calculation. We provide theoretical analysis for problems with linear equality constraints and normalization constraints, and show examples where the approximation works well in practice as well as some cautionary tales for when it fails.
Abstract:Multimodal alignment facilitates the retrieval of instances from one modality when queried using another. In this paper, we consider a novel setting where such an alignment is between (i) instruction steps that are depicted as assembly diagrams (commonly seen in Ikea assembly manuals) and (ii) video segments from in-the-wild videos; these videos comprising an enactment of the assembly actions in the real world. To learn this alignment, we introduce a novel supervised contrastive learning method that learns to align videos with the subtle details in the assembly diagrams, guided by a set of novel losses. To study this problem and demonstrate the effectiveness of our method, we introduce a novel dataset: IAW for Ikea assembly in the wild consisting of 183 hours of videos from diverse furniture assembly collections and nearly 8,300 illustrations from their associated instruction manuals and annotated for their ground truth alignments. We define two tasks on this dataset: First, nearest neighbor retrieval between video segments and illustrations, and, second, alignment of instruction steps and the segments for each video. Extensive experiments on IAW demonstrate superior performances of our approach against alternatives.
Abstract:We present NeRFEditor, an efficient learning framework for 3D scene editing, which takes a video captured over 360{\deg} as input and outputs a high-quality, identity-preserving stylized 3D scene. Our method supports diverse types of editing such as guided by reference images, text prompts, and user interactions. We achieve this by encouraging a pre-trained StyleGAN model and a NeRF model to learn from each other mutually. Specifically, we use a NeRF model to generate numerous image-angle pairs to train an adjustor, which can adjust the StyleGAN latent code to generate high-fidelity stylized images for any given angle. To extrapolate editing to GAN out-of-domain views, we devise another module that is trained in a self-supervised learning manner. This module maps novel-view images to the hidden space of StyleGAN that allows StyleGAN to generate stylized images on novel views. These two modules together produce guided images in 360{\deg}views to finetune a NeRF to make stylization effects, where a stable fine-tuning strategy is proposed to achieve this. Experiments show that NeRFEditor outperforms prior work on benchmark and real-world scenes with better editability, fidelity, and identity preservation.
Abstract:Generative models such as generative adversarial networks and autoencoders have gained a great deal of attention in the medical field due to their excellent data generation capability. This paper provides a comprehensive survey of generative models for three-dimensional (3D) volumes, focusing on the brain and heart. A new and elaborate taxonomy of unconditional and conditional generative models is proposed to cover diverse medical tasks for the brain and heart: unconditional synthesis, classification, conditional synthesis, segmentation, denoising, detection, and registration. We provide relevant background, examine each task and also suggest potential future directions. A list of the latest publications will be updated on Github to keep up with the rapid influx of papers at \url{https://github.com/csyanbin/3D-Medical-Generative-Survey}.
Abstract:The generation of three-dimensional (3D) medical images can have great application potential since it takes into account the 3D anatomical structure. There are two problems, however, that prevent effective training of a 3D medical generative model: (1) 3D medical images are very expensive to acquire and annotate, resulting in an insufficient number of training images, (2) a large number of parameters are involved in 3D convolution. To address both problems, we propose a novel GAN model called 3D Split&Shuffle-GAN. In order to address the 3D data scarcity issue, we first pre-train a two-dimensional (2D) GAN model using abundant image slices and inflate the 2D convolution weights to improve initialization of the 3D GAN. Novel 3D network architectures are proposed for both the generator and discriminator of the GAN model to significantly reduce the number of parameters while maintaining the quality of image generation. A number of weight inflation strategies and parameter-efficient 3D architectures are investigated. Experiments on both heart (Stanford AIMI Coronary Calcium) and brain (Alzheimer's Disease Neuroimaging Initiative) datasets demonstrate that the proposed approach leads to improved 3D images generation quality with significantly fewer parameters.
Abstract:Unsupervised anomaly detection (AD) is a challenging task in realistic applications. Recently, there is an increasing trend to detect anomalies with deep neural networks (DNN). However, most popular deep AD detectors cannot protect the network from learning contaminated information brought by anomalous data, resulting in unsatisfactory detection performance and overfitting issues. In this work, we identify one reason that hinders most existing DNN-based anomaly detection methods from performing is the wide adoption of the Empirical Risk Minimization (ERM). ERM assumes that the performance of an algorithm on an unknown distribution can be approximated by averaging losses on the known training set. This averaging scheme thus ignores the distinctions between normal and anomalous instances. To break through the limitations of ERM, we propose a novel Diminishing Empirical Risk Minimization (DERM) framework. Specifically, DERM adaptively adjusts the impact of individual losses through a well-devised aggregation strategy. Theoretically, our proposed DERM can directly modify the gradient contribution of each individual loss in the optimization process to suppress the influence of outliers, leading to a robust anomaly detector. Empirically, DERM outperformed the state-of-the-art on the unsupervised AD benchmark consisting of 18 datasets.
Abstract:Recently, many detection methods based on convolutional neural networks (CNNs) have been proposed for image splicing forgery detection. Most of these detection methods focus on the local patches or local objects. In fact, image splicing forgery detection is a global binary classification task that distinguishes the tampered and non-tampered regions by image fingerprints. However, some specific image contents are hardly retained by CNN-based detection networks, but if included, would improve the detection accuracy of the networks. To resolve these issues, we propose a novel network called dual-encoder U-Net (D-Unet) for image splicing forgery detection, which employs an unfixed encoder and a fixed encoder. The unfixed encoder autonomously learns the image fingerprints that differentiate between the tampered and non-tampered regions, whereas the fixed encoder intentionally provides the direction information that assists the learning and detection of the network. This dual-encoder is followed by a spatial pyramid global-feature extraction module that expands the global insight of D-Unet for classifying the tampered and non-tampered regions more accurately. In an experimental comparison study of D-Unet and state-of-the-art methods, D-Unet outperformed the other methods in image-level and pixel-level detection, without requiring pre-training or training on a large number of forgery images. Moreover, it was stably robust to different attacks.
Abstract:Optimal transport is a machine learning problem with applications including distribution comparison, feature selection, and generative adversarial networks. In this paper, we propose feature robust optimal transport (FROT) for high-dimensional data, which jointly solves feature selection and OT problems. Specifically, we formulate the FROT problem as a min--max optimization problem. Then, we propose a convex formulation of FROT and solve it with the Frank--Wolfe-based optimization algorithm, where the sub-problem can be efficiently solved using the Sinkhorn algorithm. A key advantage of FROT is that important features can be analytically determined by simply solving the convex optimization problem. Furthermore, we propose using the FROT algorithm for the layer selection problem in deep neural networks for semantic correspondence. By conducting synthetic and benchmark experiments, we demonstrate that the proposed method can determine important features. Additionally, we show that the FROT algorithm achieves a state-of-the-art performance in real-world semantic correspondence datasets.