Abstract:As the computational requirements for machine learning systems and the size and complexity of machine learning frameworks increases, essential framework innovation has become challenging. While computational needs have driven recent compiler, networking, and hardware advancements, utilization of those advancements by machine learning tools is occurring at a slower pace. This is in part due to the difficulties involved in prototyping new computational paradigms with existing frameworks. Large frameworks prioritize machine learning researchers and practitioners as end users and pay comparatively little attention to systems researchers who can push frameworks forward -- we argue that both are equally important stakeholders. We introduce Flashlight, an open-source library built to spur innovation in machine learning tools and systems by prioritizing open, modular, customizable internals and state-of-the-art, research-ready models and training setups across a variety of domains. Flashlight allows systems researchers to rapidly prototype and experiment with novel ideas in machine learning computation and has low overhead, competing with and often outperforming other popular machine learning frameworks. We see Flashlight as a tool enabling research that can benefit widely used libraries downstream and bring machine learning and systems researchers closer together.
Abstract:Recently, self-supervised learning methods like MoCo, SimCLR, BYOL and SwAV have reduced the gap with supervised methods. These results have been achieved in a control environment, that is the highly curated ImageNet dataset. However, the premise of self-supervised learning is that it can learn from any random image and from any unbounded dataset. In this work, we explore if self-supervision lives to its expectation by training large models on random, uncurated images with no supervision. Our final SElf-supERvised (SEER) model, a RegNetY with 1.3B parameters trained on 1B random images with 512 GPUs achieves 84.2% top-1 accuracy, surpassing the best self-supervised pretrained model by 1% and confirming that self-supervised learning works in a real world setting. Interestingly, we also observe that self-supervised models are good few-shot learners achieving 77.9% top-1 with access to only 10% of ImageNet. Code: https://github.com/facebookresearch/vissl
Abstract:Existing work in translation demonstrated the potential of massively multilingual machine translation by training a single model able to translate between any pair of languages. However, much of this work is English-Centric by training only on data which was translated from or to English. While this is supported by large sources of training data, it does not reflect translation needs worldwide. In this work, we create a true Many-to-Many multilingual translation model that can translate directly between any pair of 100 languages. We build and open source a training dataset that covers thousands of language directions with supervised data, created through large-scale mining. Then, we explore how to effectively increase model capacity through a combination of dense scaling and language-specific sparse parameters to create high quality models. Our focus on non-English-Centric models brings gains of more than 10 BLEU when directly translating between non-English directions while performing competitively to the best single systems of WMT. We open-source our scripts so that others may reproduce the data, evaluation, and final M2M-100 model.
Abstract:We study training a single acoustic model for multiple languages with the aim of improving automatic speech recognition (ASR) performance on low-resource languages, and over-all simplifying deployment of ASR systems that support diverse languages. We perform an extensive benchmark on 51 languages, with varying amount of training data by language(from 100 hours to 1100 hours). We compare three variants of multilingual training from a single joint model without knowing the input language, to using this information, to multiple heads (one per language cluster). We show that multilingual training of ASR models on several languages can improve recognition performance, in particular, on low resource languages. We see 20.9%, 23% and 28.8% average WER relative reduction compared to monolingual baselines on joint model, joint model with language input and multi head model respectively. To our knowledge, this is the first work studying multilingual ASR at massive scale, with more than 50 languages and more than 16,000 hours of audio across them.
Abstract:Many semi- and weakly-supervised approaches have been investigated for overcoming the labeling cost of building high quality speech recognition systems. On the challenging task of transcribing social media videos in low-resource conditions, we conduct a large scale systematic comparison between two self-labeling methods on one hand, and weakly-supervised pretraining using contextual metadata on the other. We investigate distillation methods at the frame level and the sequence level for hybrid, encoder-only CTC-based, and encoder-decoder speech recognition systems on Dutch and Romanian languages using 27,000 and 58,000 hours of unlabeled audio respectively. Although all approaches improved upon their respective baseline WERs by more than 8%, sequence-level distillation for encoder-decoder models provided the largest relative WER reduction of 20% compared to the strongest data-augmented supervised baseline.
Abstract:We design an online end-to-end speech recognition system based on Time-Depth Separable (TDS) convolutions and Connectionist Temporal Classification (CTC). We improve the core TDS architecture in order to limit the future context and hence reduce latency while maintaining accuracy. The system has almost three times the throughput of a well tuned hybrid ASR baseline while also having lower latency and a better word error rate. Also important to the efficiency of the recognizer is our highly optimized beam search decoder. To show the impact of our design choices, we analyze throughput, latency, accuracy, and discuss how these metrics can be tuned based on the user requirements.
Abstract:We introduce a new collection of spoken English audio suitable for training speech recognition systems under limited or no supervision. It is derived from open-source audio books from the LibriVox project. It contains over 60K hours of audio, which is, to our knowledge, the largest freely-available corpus of speech. The audio has been segmented using voice activity detection and is tagged with SNR, speaker ID and genre descriptions. Additionally, we provide baseline systems and evaluation metrics working under three settings: (1) the zero resource/unsupervised setting (ABX), (2) the semi-supervised setting (PER, CER) and (3) the distant supervision setting (WER). Settings (2) and (3) use limited textual resources (10 minutes to 10 hours) aligned with the speech. Setting (3) uses large amounts of unaligned text. They are evaluated on the standard LibriSpeech dev and test sets for comparison with the supervised state-of-the-art.
Abstract:We study ResNet-, Time-Depth Separable ConvNets-, and Transformer-based acoustic models, trained with CTC or Seq2Seq criterions. We perform experiments on the LibriSpeech dataset, with and without LM decoding, optionally with beam rescoring. We reach 5.18% WER with external language models for decoding and rescoring. Additionally, we leverage the unlabeled data from LibriVox by doing semi-supervised training and show that it is possible to reach 5.29% WER on test-other without decoding, and 4.11% WER with decoding and rescoring, with only the standard 960 hours from LibriSpeech as labeled data.
Abstract:This paper introduces wav2letter++, the fastest open-source deep learning speech recognition framework. wav2letter++ is written entirely in C++, and uses the ArrayFire tensor library for maximum efficiency. Here we explain the architecture and design of the wav2letter++ system and compare it to other major open-source speech recognition systems. In some cases wav2letter++ is more than 2x faster than other optimized frameworks for training end-to-end neural networks for speech recognition. We also show that wav2letter++'s training times scale linearly to 64 GPUs, the highest we tested, for models with 100 million parameters. High-performance frameworks enable fast iteration, which is often a crucial factor in successful research and model tuning on new datasets and tasks.
Abstract:Current state-of-the-art speech recognition systems build on recurrent neural networks for acoustic and/or language modeling, and rely on feature extraction pipelines to extract mel-filterbanks or cepstral coefficients. In this paper we present an alternative approach based solely on convolutional neural networks, leveraging recent advances in acoustic models from the raw waveform and language modeling. This fully convolutional approach is trained end-to-end to predict characters from the raw waveform, removing the feature extraction step altogether. An external convolutional language model is used to decode words. On Wall Street Journal, our model matches the current state-of-the-art. On Librispeech, we report state-of-the-art performance among end-to-end models, including Deep Speech 2 trained with 12 times more acoustic data and significantly more linguistic data.