Abstract:Recent advances in large language models (LLMs) have led to the development of various evaluation benchmarks. These benchmarks typically rely on a single instruction template for evaluating all LLMs on a specific task. In this paper, we comprehensively analyze the brittleness of results obtained via single-prompt evaluations across 6.5M instances, involving 20 different LLMs and 39 tasks from 3 benchmarks. To improve robustness of the analysis, we propose to evaluate LLMs with a set of diverse prompts instead. We discuss tailored evaluation metrics for specific use cases (e.g., LLM developers vs. developers interested in a specific downstream task), ensuring a more reliable and meaningful assessment of LLM capabilities. We then implement these criteria and conduct evaluations of multiple models, providing insights into the true strengths and limitations of current LLMs.
Abstract:Drawing from discussions at the inaugural DMLR workshop at ICML 2023 and meetings prior, in this report we outline the relevance of community engagement and infrastructure development for the creation of next-generation public datasets that will advance machine learning science. We chart a path forward as a collective effort to sustain the creation and maintenance of these datasets and methods towards positive scientific, societal and business impact.
Abstract:With an increasing number of parameters and pre-training data, generative large language models (LLMs) have shown remarkable capabilities to solve tasks with minimal or no task-related examples. Notably, LLMs have been successfully employed as evaluation metrics in text generation tasks. Within this context, we introduce the Eval4NLP 2023 shared task that asks participants to explore prompting and score extraction for machine translation (MT) and summarization evaluation. Specifically, we propose a novel competition setting in which we select a list of allowed LLMs and disallow fine-tuning to ensure a focus on prompting. We present an overview of participants' approaches and evaluate them on a new reference-free test set spanning three language pairs for MT and a summarization dataset. Notably, despite the task's restrictions, the best-performing systems achieve results on par with or even surpassing recent reference-free metrics developed using larger models, including GEMBA and Comet-Kiwi-XXL. Finally, as a separate track, we perform a small-scale human evaluation of the plausibility of explanations given by the LLMs.
Abstract:Schema induction builds a graph representation explaining how events unfold in a scenario. Existing approaches have been based on information retrieval (IR) and information extraction(IE), often with limited human curation. We demonstrate a human-in-the-loop schema induction system powered by GPT-3. We first describe the different modules of our system, including prompting to generate schematic elements, manual edit of those elements, and conversion of those into a schema graph. By qualitatively comparing our system to previous ones, we show that our system not only transfers to new domains more easily than previous approaches, but also reduces efforts of human curation thanks to our interactive interface.
Abstract:There is significant interest in developing evaluation metrics which accurately estimate the quality of generated text without the aid of a human-written reference text, which can be time consuming and expensive to collect or entirely unavailable in online applications. However, in this work, we demonstrate that these reference-free metrics are inherently biased and limited in their ability to evaluate generated text, and we argue that they should not be used to measure progress on tasks like machine translation or summarization. We show how reference-free metrics are equivalent to using one generation model to evaluate another, which has several limitations: (1) the metrics can be optimized at test time to find the approximate best-possible output, (2) they are inherently biased toward models which are more similar to their own, and (3) they can be biased against higher-quality outputs, including those written by humans. Therefore, we recommend that reference-free metrics should be used as diagnostic tools for analyzing and understanding model behavior instead of measures of how well models perform a task, in which the goal is to achieve as high of a score as possible.
Abstract:What are the events involved in a pandemic outbreak? What steps should be taken when planning a wedding? The answers to these questions can be found by collecting many documents on the complex event of interest, extracting relevant information, and analyzing it. We present a new approach in which large language models are utilized to generate source documents that allow predicting, given a high-level event definition, the specific events, arguments, and relations between them to construct a schema that describes the complex event in its entirety. Using our model, complete schemas on any topic can be generated on-the-fly without any manual data collection, i.e., in a zero-shot manner. Moreover, we develop efficient methods to extract pertinent information from texts and demonstrate in a series of experiments that these schemas are considered to be more complete than human-curated ones in the majority of examined scenarios. Finally, we show that this framework is comparable in performance with previous supervised schema induction methods that rely on collecting real texts while being more general and flexible without the need for a predefined ontology.
Abstract:How reliably an automatic summarization evaluation metric replicates human judgments of summary quality is quantified by system-level correlations. We identify two ways in which the definition of the system-level correlation is inconsistent with how metrics are used to evaluate systems in practice and propose changes to rectify this disconnect. First, we calculate the system score for an automatic metric using the full test set instead of the subset of summaries judged by humans, which is currently standard practice. We demonstrate how this small change leads to more precise estimates of system-level correlations. Second, we propose to calculate correlations only on pairs of systems that are separated by small differences in automatic scores which are commonly observed in practice. This allows us to demonstrate that our best estimate of the correlation of ROUGE to human judgments is near 0 in realistic scenarios. The results from the analyses point to the need to collect more high-quality human judgments and to improve automatic metrics when differences in system scores are small.
Abstract:The quality of a summarization evaluation metric is quantified by calculating the correlation between its scores and human annotations across a large number of summaries. Currently, it is not clear how precise these correlation estimates are, nor whether differences between two metrics' correlations reflects a true difference or if it is due to random chance. In this work, we address these two problems by proposing methods for calculating confidence intervals and running hypothesis tests for correlations using two resampling methods, bootstrapping and permutation. After evaluating which of the proposed methods is most appropriate for summarization through two simulation experiments, we analyze the results of applying these methods to several different automatic evaluation metrics across three sets of human annotations. We find that the confidence intervals are rather wide, demonstrating high uncertainty in how reliable automatic metrics truly are. Further, although many metrics fail to show statistical improvements over ROUGE, two recent works, QAEval and BERTScore, do in some evaluation settings.
Abstract:We present the Structured Weighted Violation MIRA (SWVM), a new structured prediction algorithm that is based on an hybridization between MIRA (Crammer and Singer, 2003) and the structured weighted violations perceptron (SWVP) (Dror and Reichart, 2016). We demonstrate that the concepts developed in (Dror and Reichart, 2016) combined with a powerful structured prediction algorithm can improve performance on sequence labeling tasks. In experiments with syntactic chunking and named entity recognition (NER), the new algorithm substantially outperforms the original MIRA as well as the original structured perceptron and SWVP. Our code is available at https://github.com/dorringel/SWVM.
Abstract:Statistical significance testing plays an important role when drawing conclusions from experimental results in NLP papers. Particularly, it is a valuable tool when one would like to establish the superiority of one algorithm over another. This appendix complements the guide for testing statistical significance in NLP presented in \cite{dror2018hitchhiker} by proposing valid statistical tests for the common tasks and evaluation measures in the field.