Abstract:With the growing popularity of text-to-image generative models, there has been increasing focus on understanding their risks and biases. Recent work has found that state-of-the-art models struggle to depict everyday objects with the true diversity of the real world and have notable gaps between geographic regions. In this work, we aim to increase the diversity of generated images of common objects such that per-region variations are representative of the real world. We introduce an inference time intervention, contextualized Vendi Score Guidance (c-VSG), that guides the backwards steps of latent diffusion models to increase the diversity of a sample as compared to a "memory bank" of previously generated images while constraining the amount of variation within that of an exemplar set of real-world contextualizing images. We evaluate c-VSG with two geographically representative datasets and find that it substantially increases the diversity of generated images, both for the worst performing regions and on average, while simultaneously maintaining or improving image quality and consistency. Additionally, qualitative analyses reveal that diversity of generated images is significantly improved, including along the lines of reductive region portrayals present in the original model. We hope that this work is a step towards text-to-image generative models that reflect the true geographic diversity of the world.
Abstract:Following the recent popularity of Large Language Models (LLMs), several attempts have been made to extend them to the visual domain. From having a visual assistant that could guide us through unfamiliar environments to generative models that produce images using only a high-level text description, the vision-language model (VLM) applications will significantly impact our relationship with technology. However, there are many challenges that need to be addressed to improve the reliability of those models. While language is discrete, vision evolves in a much higher dimensional space in which concepts cannot always be easily discretized. To better understand the mechanics behind mapping vision to language, we present this introduction to VLMs which we hope will help anyone who would like to enter the field. First, we introduce what VLMs are, how they work, and how to train them. Then, we present and discuss approaches to evaluate VLMs. Although this work primarily focuses on mapping images to language, we also discuss extending VLMs to videos.
Abstract:Quantization lowers memory usage, computational requirements, and latency by utilizing fewer bits to represent model weights and activations. In this work, we investigate the generalization properties of quantized neural networks, a characteristic that has received little attention despite its implications on model performance. In particular, first, we develop a theoretical model for quantization in neural networks and demonstrate how quantization functions as a form of regularization. Second, motivated by recent work connecting the sharpness of the loss landscape and generalization, we derive an approximate bound for the generalization of quantized models conditioned on the amount of quantization noise. We then validate our hypothesis by experimenting with over 2000 models trained on CIFAR-10, CIFAR-100, and ImageNet datasets on convolutional and transformer-based models.
Abstract:Current status quo in machine learning is to use static datasets of real images for training, which often come from long-tailed distributions. With the recent advances in generative models, researchers have started augmenting these static datasets with synthetic data, reporting moderate performance improvements on classification tasks. We hypothesize that these performance gains are limited by the lack of feedback from the classifier to the generative model, which would promote the usefulness of the generated samples to improve the classifier's performance. In this work, we introduce a framework for augmenting static datasets with useful synthetic samples, which leverages one-shot feedback from the classifier to drive the sampling of the generative model. In order for the framework to be effective, we find that the samples must be close to the support of the real data of the task at hand, and be sufficiently diverse. We validate three feedback criteria on a long-tailed dataset (ImageNet-LT) as well as a group-imbalanced dataset (NICO++). On ImageNet-LT, we achieve state-of-the-art results, with over 4 percent improvement on underrepresented classes while being twice efficient in terms of the number of generated synthetic samples. NICO++ also enjoys marked boosts of over 5 percent in worst group accuracy. With these results, our framework paves the path towards effectively leveraging state-of-the-art text-to-image models as data sources that can be queried to improve downstream applications.
Abstract:In this paper we study the effects of quantization in DNN training. We hypothesize that weight quantization is a form of regularization and the amount of regularization is correlated with the quantization level (precision). We confirm our hypothesis by providing analytical study and empirical results. By modeling weight quantization as a form of additive noise to weights, we explore how this noise propagates through the network at training time. We then show that the magnitude of this noise is correlated with the level of quantization. To confirm our analytical study, we performed an extensive list of experiments summarized in this paper in which we show that the regularization effects of quantization can be seen in various vision tasks and models, over various datasets. Based on our study, we propose that 8-bit quantization provides a reliable form of regularization in different vision tasks and models.
Abstract:Adversarial formulations in machine learning have rekindled interest in differentiable games. The development of efficient optimization methods for two-player min-max games is an active area of research with a timely impact on adversarial formulations including generative adversarial networks (GANs). Existing methods for this type of problem typically employ intuitive, carefully hand-designed mechanisms for controlling the problematic rotational dynamics commonly encountered during optimization. In this work, we take a novel approach to address this issue by casting min-max optimization as a physical system. We propose LEAD (Least-Action Dynamics), a second-order optimizer that uses the principle of least-action from physics to discover an efficient optimizer for min-max games. We subsequently provide convergence analysis of our optimizer in quadratic min-max games using the Lyapunov theory. Finally, we empirically test our method on synthetic problems and GANs to demonstrate improvements over baseline methods.
Abstract:Games generalize the optimization paradigm by introducing different objective functions for different optimizing agents, known as players. Generative Adversarial Networks (GANs) are arguably the most popular game formulation in recent machine learning literature. GANs achieve great results on generating realistic natural images, however they are known for being difficult to train. Training them involves finding a Nash equilibrium, typically performed using gradient descent on the two players' objectives. Game dynamics can induce rotations that slow down convergence to a Nash equilibrium, or prevent it altogether. We provide a theoretical analysis of the game dynamics. Our analysis, supported by experiments, shows that gradient descent with a negative momentum term can improve the convergence properties of some GANs.
Abstract:Service level agreement (SLA) is an essential part of cloud systems to ensure maximum availability of services for customers. With a violation of SLA, the provider has to pay penalties. In this paper, we explore two machine learning models: Naive Bayes and Random Forest Classifiers to predict SLA violations. Since SLA violations are a rare event in the real world (~0.2 %), the classification task becomes more challenging. In order to overcome these challenges, we use several re-sampling methods. We find that random forests with SMOTE-ENN re-sampling have the best performance among other methods with the accuracy of 99.88 % and F_1 score of 0.9980.