Abstract:Recommender systems are widely used to suggest engaging content, and Large Language Models (LLMs) have given rise to generative recommenders. Such systems can directly generate items, including for open-set tasks like question suggestion. While the world knowledge of LLMs enable good recommendations, improving the generated content through user feedback is challenging as continuously fine-tuning LLMs is prohibitively expensive. We present a training-free approach for optimizing generative recommenders by connecting user feedback loops to LLM-based optimizers. We propose a generative explore-exploit method that can not only exploit generated items with known high engagement, but also actively explore and discover hidden population preferences to improve recommendation quality. We evaluate our approach on question generation in two domains (e-commerce and general knowledge), and model user feedback with Click Through Rate (CTR). Experiments show our LLM-based explore-exploit approach can iteratively improve recommendations, and consistently increase CTR. Ablation analysis shows that generative exploration is key to learning user preferences, avoiding the pitfalls of greedy exploit-only approaches. A human evaluation strongly supports our quantitative findings.
Abstract:Digital assistants have become ubiquitous in e-commerce applications, following the recent advancements in Information Retrieval (IR), Natural Language Processing (NLP) and Generative Artificial Intelligence (AI). However, customers are often unsure or unaware of how to effectively converse with these assistants to meet their shopping needs. In this work, we emphasize the importance of providing customers a fast, easy to use, and natural way to interact with conversational shopping assistants. We propose a framework that employs Large Language Models (LLMs) to automatically generate contextual, useful, answerable, fluent and diverse questions about products, via in-context learning and supervised fine-tuning. Recommending these questions to customers as helpful suggestions or hints to both start and continue a conversation can result in a smoother and faster shopping experience with reduced conversation overhead and friction. We perform extensive offline evaluations, and discuss in detail about potential customer impact, and the type, length and latency of our generated product questions if incorporated into a real-world shopping assistant.
Abstract:Conversational Task Assistants (CTAs) guide users in performing a multitude of activities, such as making recipes. However, ensuring that interactions remain engaging, interesting, and enjoyable for CTA users is not trivial, especially for time-consuming or challenging tasks. Grounded in psychological theories of human interest, we propose to engage users with contextual and interesting statements or facts during interactions with a multi-modal CTA, to reduce fatigue and task abandonment before a task is complete. To operationalize this idea, we train a high-performing classifier (82% F1-score) to automatically identify relevant and interesting facts for users. We use it to create an annotated dataset of task-specific interesting facts for the domain of cooking. Finally, we design and validate a dialogue policy to incorporate the identified relevant and interesting facts into a conversation, to improve user engagement and task completion. Live testing on a leading multi-modal voice assistant shows that 66% of the presented facts were received positively, leading to a 40% gain in the user satisfaction rating, and a 37% increase in conversation length. These findings emphasize that strategically incorporating interesting facts into the CTA experience can promote real-world user participation for guided task interactions.
Abstract:E-commerce customers frequently seek detailed product information for purchase decisions, commonly contacting sellers directly with extended queries. This manual response requirement imposes additional costs and disrupts buyer's shopping experience with response time fluctuations ranging from hours to days. We seek to automate buyer inquiries to sellers in a leading e-commerce store using a domain-specific federated Question Answering (QA) system. The main challenge is adapting current QA systems, designed for single questions, to address detailed customer queries. We address this with a low-latency, sequence-to-sequence approach, MESSAGE-TO-QUESTION ( M2Q ). It reformulates buyer messages into succinct questions by identifying and extracting the most salient information from a message. Evaluation against baselines shows that M2Q yields relative increases of 757% in question understanding, and 1,746% in answering rate from the federated QA system. Live deployment shows that automatic answering saves sellers from manually responding to millions of messages per year, and also accelerates customer purchase decisions by eliminating the need for buyers to wait for a reply
Abstract:Methods to generate text from structured data have advanced significantly in recent years, primarily due to fine-tuning of pre-trained language models on large datasets. However, such models can fail to produce output faithful to the input data, particularly on out-of-domain data. Sufficient annotated data is often not available for specific domains, leading us to seek an unsupervised approach to improve the faithfulness of output text. Since the problem is fundamentally one of consistency between the representations of the structured data and text, we evaluate the effectiveness of cycle training in this work. Cycle training uses two models which are inverses of each other: one that generates text from structured data, and one which generates the structured data from natural language text. We show that cycle training, when initialized with a small amount of supervised data (100 samples in our case), achieves nearly the same performance as fully supervised approaches for the data-to-text generation task on the WebNLG, E2E, WTQ, and WSQL datasets. We perform extensive empirical analysis with automated evaluation metrics and a newly designed human evaluation schema to reveal different cycle training strategies' effectiveness of reducing various types of generation errors. Our code is publicly available at https://github.com/Edillower/CycleNLG.
Abstract:One of the primary tasks in Natural Language Understanding (NLU) is to recognize the intents as well as domains of users' spoken and written language utterances. Most existing research formulates this as a supervised classification problem with a closed-world assumption, i.e. the domains or intents to be identified are pre-defined or known beforehand. Real-world applications however increasingly encounter dynamic, rapidly evolving environments with newly emerging intents and domains, about which no information is known during model training. We propose a novel framework, ADVIN, to automatically discover novel domains and intents from large volumes of unlabeled data. We first employ an open classification model to identify all utterances potentially consisting of a novel intent. Next, we build a knowledge transfer component with a pairwise margin loss function. It learns discriminative deep features to group together utterances and discover multiple latent intent categories within them in an unsupervised manner. We finally hierarchically link mutually related intents into domains, forming an intent-domain taxonomy. ADVIN significantly outperforms baselines on three benchmark datasets, and real user utterances from a commercial voice-powered agent.
Abstract:Detecting and identifying user intent from text, both written and spoken, plays an important role in modelling and understand dialogs. Existing research for intent discovery model it as a classification task with a predefined set of known categories. To generailze beyond these preexisting classes, we define a new task of \textit{open intent discovery}. We investigate how intent can be generalized to those not seen during training. To this end, we propose a two-stage approach to this task - predicting whether an utterance contains an intent, and then tagging the intent in the input utterance. Our model consists of a bidirectional LSTM with a CRF on top to capture contextual semantics, subject to some constraints. Self-attention is used to learn long distance dependencies. Further, we adapt an adversarial training approach to improve robustness and perforamce across domains. We also present a dataset of 25k real-life utterances that have been labelled via crowd sourcing. Our experiments across different domains and real-world datasets show the effectiveness of our approach, with less than 100 annotated examples needed per unique domain to recognize diverse intents. The approach outperforms state-of-the-art baselines by 5-15% F1 score points.
Abstract:The rapid advances in e-commerce and Web 2.0 technologies have greatly increased the impact of commercial advertisements on the general public. As a key enabling technology, a multitude of recommender systems exists which analyzes user features and browsing patterns to recommend appealing advertisements to users. In this work, we seek to study the characteristics or attributes that characterize an effective advertisement and recommend a useful set of features to aid the designing and production processes of commercial advertisements. We analyze the temporal patterns from multimedia content of advertisement videos including auditory, visual and textual components, and study their individual roles and synergies in the success of an advertisement. The objective of this work is then to measure the effectiveness of an advertisement, and to recommend a useful set of features to advertisement designers to make it more successful and approachable to users. Our proposed framework employs the signal processing technique of cross modality feature learning where data streams from different components are employed to train separate neural network models and are then fused together to learn a shared representation. Subsequently, a neural network model trained on this joint feature embedding representation is utilized as a classifier to predict advertisement effectiveness. We validate our approach using subjective ratings from a dedicated user study, the sentiment strength of online viewer comments, and a viewer opinion metric of the ratio of the Likes and Views received by each advertisement from an online platform.