Abstract:In recent years, Artificial Intelligence Generated Content (AIGC) has advanced from text-to-image generation to text-to-video and multimodal video synthesis. However, generating playable games presents significant challenges due to the stringent requirements for real-time interaction, high visual quality, and accurate simulation of game mechanics. Existing approaches often fall short, either lacking real-time capabilities or failing to accurately simulate interactive mechanics. To tackle the playability issue, we propose a novel method called \emph{PlayGen}, which encompasses game data generation, an autoregressive DiT-based diffusion model, and a comprehensive playability-based evaluation framework. Validated on well-known 2D and 3D games, PlayGen achieves real-time interaction, ensures sufficient visual quality, and provides accurate interactive mechanics simulation. Notably, these results are sustained even after over 1000 frames of gameplay on an NVIDIA RTX 2060 GPU. Our code is publicly available: https://github.com/GreatX3/Playable-Game-Generation. Our playable demo generated by AI is: http://124.156.151.207.
Abstract:With the significant development of large models in recent years, Large Vision-Language Models (LVLMs) have demonstrated remarkable capabilities across a wide range of multimodal understanding and reasoning tasks. Compared to traditional Large Language Models (LLMs), LVLMs present great potential and challenges due to its closer proximity to the multi-resource real-world applications and the complexity of multi-modal processing. However, the vulnerability of LVLMs is relatively underexplored, posing potential security risks in daily usage. In this paper, we provide a comprehensive review of the various forms of existing LVLM attacks. Specifically, we first introduce the background of attacks targeting LVLMs, including the attack preliminary, attack challenges, and attack resources. Then, we systematically review the development of LVLM attack methods, such as adversarial attacks that manipulate model outputs, jailbreak attacks that exploit model vulnerabilities for unauthorized actions, prompt injection attacks that engineer the prompt type and pattern, and data poisoning that affects model training. Finally, we discuss promising research directions in the future. We believe that our survey provides insights into the current landscape of LVLM vulnerabilities, inspiring more researchers to explore and mitigate potential safety issues in LVLM developments. The latest papers on LVLM attacks are continuously collected in https://github.com/liudaizong/Awesome-LVLM-Attack.
Abstract:Deep learning-based joint source-channel coding (deep JSCC) has been demonstrated as an effective approach for wireless image transmission. Nevertheless, current research has concentrated on minimizing a standard distortion metric such as Mean Squared Error (MSE), which does not necessarily improve the perceptual quality. To address this issue, we propose DiffJSCC, a novel framework that leverages pre-trained text-to-image diffusion models to enhance the realism of images transmitted over the channel. The proposed DiffJSCC utilizes prior deep JSCC frameworks to deliver an initial reconstructed image at the receiver. Then, the spatial and textual features are extracted from the initial reconstruction, which, together with the channel state information (e.g., signal-to-noise ratio, SNR), are passed to a control module to fine-tune the pre-trained Stable Diffusion model. Extensive experiments on the Kodak dataset reveal that our method significantly surpasses both conventional methods and prior deep JSCC approaches on perceptual metrics such as LPIPS and FID scores, especially with poor channel conditions and limited bandwidth. Notably, DiffJSCC can achieve highly realistic reconstructions for 768x512 pixel Kodak images with only 3072 symbols (<0.008 symbols per pixel) under 1dB SNR. Our code will be released in https://github.com/mingyuyng/DiffJSCC.
Abstract:African penguins (Spheniscus demersus) are an endangered species. Little is known regarding their underwater hunting strategies and associated predation success rates, yet this is essential for guiding conservation. Modern bio-logging technology has the potential to provide valuable insights, but manually analysing large amounts of data from animal-borne video recorders (AVRs) is time-consuming. In this paper, we publish an animal-borne underwater video dataset of penguins and introduce a ready-to-deploy deep learning system capable of robustly detecting penguins (mAP50@98.0%) and also instances of fish (mAP50@73.3%). We note that the detectors benefit explicitly from air-bubble learning to improve accuracy. Extending this detector towards a dual-stream behaviour recognition network, we also provide the first results for identifying predation behaviour in penguin underwater videos. Whilst results are promising, further work is required for useful applicability of predation behaviour detection in field scenarios. In summary, we provide a highly reliable underwater penguin detector, a fish detector, and a valuable first attempt towards an automated visual detection of complex behaviours in a marine predator. We publish the networks, the DivingWithPenguins video dataset, annotations, splits, and weights for full reproducibility and immediate usability by practitioners.
Abstract:A new GPS-less, daily localization method is proposed with deep learning sensor fusion that uses daylight intensity and temperature sensor data for Monarch butterfly tracking. Prior methods suffer from the location-independent day length during the equinox, resulting in high localization errors around that date. This work proposes a new Siamese learning-based localization model that improves the accuracy and reduces the bias of daily Monarch butterfly localization using light and temperature measurements. To train and test the proposed algorithm, we use $5658$ daily measurement records collected through a data measurement campaign involving 306 volunteers across the U.S., Canada, and Mexico from 2018 to 2020. This model achieves a mean absolute error of $1.416^\circ$ in latitude and $0.393^\circ$ in longitude coordinates outperforming the prior method.
Abstract:Solving multiple visual tasks using individual models can be resource-intensive, while multi-task learning can conserve resources by sharing knowledge across different tasks. Despite the benefits of multi-task learning, such techniques can struggle with balancing the loss for each task, leading to potential performance degradation. We present a novel computation- and parameter-sharing framework that balances efficiency and accuracy to perform multiple visual tasks utilizing individually-trained single-task transformers. Our method is motivated by transfer learning schemes to reduce computational and parameter storage costs while maintaining the desired performance. Our approach involves splitting the tasks into a base task and the other sub-tasks, and sharing a significant portion of activations and parameters/weights between the base and sub-tasks to decrease inter-task redundancies and enhance knowledge sharing. The evaluation conducted on NYUD-v2 and PASCAL-context datasets shows that our method is superior to the state-of-the-art transformer-based multi-task learning techniques with higher accuracy and reduced computational resources. Moreover, our method is extended to video stream inputs, further reducing computational costs by efficiently sharing information across the temporal domain as well as the task domain. Our codes and models will be publicly available.
Abstract:Recently, graph neural networks (GNNs) have shown prominent performance in graph representation learning by leveraging knowledge from both graph structure and node features. However, most of them have two major limitations. First, GNNs can learn higher-order structural information by stacking more layers but can not deal with large depth due to the over-smoothing issue. Second, it is not easy to apply these methods on large graphs due to the expensive computation cost and high memory usage. In this paper, we present node-adaptive feature smoothing (NAFS), a simple non-parametric method that constructs node representations without parameter learning. NAFS first extracts the features of each node with its neighbors of different hops by feature smoothing, and then adaptively combines the smoothed features. Besides, the constructed node representation can further be enhanced by the ensemble of smoothed features extracted via different smoothing strategies. We conduct experiments on four benchmark datasets on two different application scenarios: node clustering and link prediction. Remarkably, NAFS with feature ensemble outperforms the state-of-the-art GNNs on these tasks and mitigates the aforementioned two limitations of most learning-based GNN counterparts.
Abstract:In recent years, deep learning-based approaches for visual-inertial odometry (VIO) have shown remarkable performance outperforming traditional geometric methods. Yet, all existing methods use both the visual and inertial measurements for every pose estimation incurring potential computational redundancy. While visual data processing is much more expensive than that for the inertial measurement unit (IMU), it may not always contribute to improving the pose estimation accuracy. In this paper, we propose an adaptive deep-learning based VIO method that reduces computational redundancy by opportunistically disabling the visual modality. Specifically, we train a policy network that learns to deactivate the visual feature extractor on the fly based on the current motion state and IMU readings. A Gumbel-Softmax trick is adopted to train the policy network to make the decision process differentiable for end-to-end system training. The learned strategy is interpretable, and it shows scenario-dependent decision patterns for adaptive complexity reduction. Experiment results show that our method achieves a similar or even better performance than the full-modality baseline with up to 78.8% computational complexity reduction for KITTI dataset evaluation. Our code will be shared in https://github.com/mingyuyng/Visual-Selective-VIO
Abstract:In this work, we are dedicated to multi-target active object tracking (AOT), where there are multiple targets as well as multiple cameras in the environment. The goal is maximize the overall target coverage of all cameras. Previous work makes a strong assumption that each camera is fixed in a location and only allowed to rotate, which limits its application. In this work, we relax the setting by allowing all cameras to both move along the boundary lines and rotate. In our setting, the action space becomes much larger, which leads to much higher computational complexity to identify the optimal action. To this end, we propose to leverage the action selection from multi-agent reinforcement learning (MARL) network to prune the search tree of Monte Carlo Tree Search (MCTS) method, so as to find the optimal action more efficiently. Besides, we model the motion of the targets to predict the future position of the targets, which makes a better estimation of the future environment state in the MCTS process. We establish a multi-target 2D environment to simulate the sports games, and experimental results demonstrate that our method can effectively improve the target coverage.
Abstract:Cooperative multi-agent reinforcement learning (MARL) has made prominent progress in recent years. For training efficiency and scalability, most of the MARL algorithms make all agents share the same policy or value network. However, many complex multi-agent tasks require agents with a variety of specific abilities to handle different subtasks. Sharing parameters indiscriminately may lead to similar behaviors across all agents, which will limit the exploration efficiency and be detrimental to the final performance. To balance the training complexity and the diversity of agents' behaviors, we propose a novel framework for learning dynamic subtask assignment (LDSA) in cooperative MARL. Specifically, we first introduce a subtask encoder that constructs a vector representation for each subtask according to its identity. To reasonably assign agents to different subtasks, we propose an ability-based subtask selection strategy, which can dynamically group agents with similar abilities into the same subtask. Then, we condition the subtask policy on its representation and agents dealing with the same subtask share their experiences to train the subtask policy. We further introduce two regularizers to increase the representation difference between subtasks and avoid agents changing subtasks frequently to stabilize training, respectively. Empirical results show that LDSA learns reasonable and effective subtask assignment for better collaboration and significantly improves the learning performance on the challenging StarCraft II micromanagement benchmark.