Abstract:Nowadays, non-privacy small-scale motion detection has attracted an increasing amount of research in remote sensing in speech recognition. These new modalities are employed to enhance and restore speech information from speakers of multiple types of data. In this paper, we propose a dataset contains 7.5 GHz Channel Impulse Response (CIR) data from ultra-wideband (UWB) radars, 77-GHz frequency modulated continuous wave (FMCW) data from millimetre wave (mmWave) radar, and laser data. Meanwhile, a depth camera is adopted to record the landmarks of the subject's lip and voice. Approximately 400 minutes of annotated speech profiles are provided, which are collected from 20 participants speaking 5 vowels, 15 words and 16 sentences. The dataset has been validated and has potential for the research of lip reading and multimodal speech recognition.
Abstract:This paper introduces a Wi-Fi signal based passive wireless sensing system that has the capability to detect diverse indoor human movements, from whole body motions to limb movements and including breathing movements of the chest. The real time signal processing used for human body motion sensing and software defined radio demo system are described and verified in practical experiments scenarios, which include detection of through-wall human body movement, hand gesture or tremor, and even respiration. The experiment results offer potential for promising healthcare applications using Wi-Fi passive sensing in the home to monitor daily activities, to gather health data and detect emergency situations.
Abstract:Motion tracking systems based on optical sensors typically often suffer from issues, such as poor lighting conditions, occlusion, limited coverage, and may raise privacy concerns. More recently, radio frequency (RF)-based approaches using commercial WiFi devices have emerged which offer low-cost ubiquitous sensing whilst preserving privacy. However, the output of an RF sensing system, such as Range-Doppler spectrograms, cannot represent human motion intuitively and usually requires further processing. In this study, MDPose, a novel framework for human skeletal motion reconstruction based on WiFi micro-Doppler signatures, is proposed. It provides an effective solution to track human activities by reconstructing a skeleton model with 17 key points, which can assist with the interpretation of conventional RF sensing outputs in a more understandable way. Specifically, MDPose has various incremental stages to gradually address a series of challenges: First, a denoising algorithm is implemented to remove any unwanted noise that may affect the feature extraction and enhance weak Doppler signatures. Secondly, the convolutional neural network (CNN)-recurrent neural network (RNN) architecture is applied to learn temporal-spatial dependency from clean micro-Doppler signatures and restore key points' velocity information. Finally, a pose optimising mechanism is employed to estimate the initial state of the skeleton and to limit the increase of error. We have conducted comprehensive tests in a variety of environments using numerous subjects with a single receiver radar system to demonstrate the performance of MDPose, and report 29.4mm mean absolute error over all key points positions, which outperforms state-of-the-art RF-based pose estimation systems.
Abstract:This paper presents a comprehensive dataset intended to evaluate passive Human Activity Recognition (HAR) and localization techniques with measurements obtained from synchronized Radio-Frequency (RF) devices and vision-based sensors. The dataset consists of RF data including Channel State Information (CSI) extracted from a WiFi Network Interface Card (NIC), Passive WiFi Radar (PWR) built upon a Software Defined Radio (SDR) platform, and Ultra-Wideband (UWB) signals acquired via commercial off-the-shelf hardware. It also consists of vision/Infra-red based data acquired from Kinect sensors. Approximately 8 hours of annotated measurements are provided, which are collected across two rooms from 6 participants performing 6 daily activities. This dataset can be exploited to advance WiFi and vision-based HAR, for example, using pattern recognition, skeletal representation, deep learning algorithms or other novel approaches to accurately recognize human activities. Furthermore, it can potentially be used to passively track a human in an indoor environment. Such datasets are key tools required for the development of new algorithms and methods in the context of smart homes, elderly care, and surveillance applications.
Abstract:This work presents an application of Integrated sensing and communication (ISAC) system for monitoring human activities directly related to healthcare. Real-time monitoring of humans can assist professionals in providing healthy living enabling technologies to ensure the health, safety, and well-being of people of all age groups. To enhance the human activity recognition performance of the ISAC system, we propose to use synthetic data generated through our human micro-Doppler simulator, SimHumalator to augment our limited measurement data. We generate a more realistic micro-Doppler signature dataset using a style-transfer neural network. The proposed network extracts environmental effects such as noise, multipath, and occlusions effects directly from the measurement data and transfers these features to our clean simulated signatures. This results in more realistic-looking signatures qualitatively and quantitatively. We use these enhanced signatures to augment our measurement data and observe an improvement in the classification performance by 5% compared to no augmentation case. Further, we benchmark the data augmentation performance of the style transferred signatures with three other synthetic datasets -- clean simulated spectrograms (no environmental effects), simulated data with added AWGN noise, and simulated data with GAN generated noise. The results indicate that style transferred simulated signatures well captures environmental factors more than any other synthetic dataset.
Abstract:Micro-Doppler signatures contain considerable information about target dynamics. However, the radar sensing systems are easily affected by noisy surroundings, resulting in uninterpretable motion patterns on the micro-Doppler spectrogram. Meanwhile, radar returns often suffer from multipath, clutter and interference. These issues lead to difficulty in, for example motion feature extraction, activity classification using micro Doppler signatures ($\mu$-DS), etc. In this paper, we propose a latent feature-wise mapping strategy, called Feature Mapping Network (FMNet), to transform measured spectrograms so that they more closely resemble the output from a simulation under the same conditions. Based on measured spectrogram and the matched simulated data, our framework contains three parts: an Encoder which is used to extract latent representations/features, a Decoder outputs reconstructed spectrogram according to the latent features, and a Discriminator minimizes the distance of latent features of measured and simulated data. We demonstrate the FMNet with six activities data and two experimental scenarios, and final results show strong enhanced patterns and can keep actual motion information to the greatest extent. On the other hand, we also propose a novel idea which trains a classifier with only simulated data and predicts new measured samples after cleaning them up with the FMNet. From final classification results, we can see significant improvements.
Abstract:The integrated sensing and communication (ISAC), in which the sensing and communication share the same frequency band and hardware, has emerged as a key technology in future wireless systems. Early works on ISAC have been focused on the design, analysis and optimization of practical ISAC technologies for various ISAC systems. While this line of works are necessary, it is equally important to study the fundamental limits of ISAC in order to understand the gap between the current state-of-the-art technologies and the performance limits, and provide useful insights and guidance for the development of better ISAC technologies that can approach the performance limits. In this paper, we aim to provide a comprehensive survey for the current research progress on the fundamental limits of ISAC. Particularly, we first propose a systematic classification method for both traditional radio sensing (such as radar sensing and wireless localization) and ISAC so that they can be naturally incorporated into a unified framework. Then we summarize the major performance metrics and bounds used in sensing, communications and ISAC, respectively. After that, we present the current research progresses on fundamental limits of each class of the traditional sensing and ISAC systems. Finally, the open problems and future research directions are discussed.
Abstract:This work presents a simulation framework to generate human micro-Dopplers in WiFi based passive radar scenarios, wherein we simulate IEEE 802.11g complaint WiFi transmissions using MATLAB's WLAN toolbox and human animation models derived from a marker-based motion capture system. We integrate WiFi transmission signals with the human animation data to generate the micro-Doppler features that incorporate the diversity of human motion characteristics, and the sensor parameters. In this paper, we consider five human activities. We uniformly benchmark the classification performance of multiple machine learning and deep learning models against a common dataset. Further, we validate the classification performance using the real radar data captured simultaneously with the motion capture system. We present experimental results using simulations and measurements demonstrating good classification accuracy of $\geq$ 95\% and $\approx$ 90\%, respectively.
Abstract:Micro-Doppler analysis has become increasingly popular in recent years owning to the ability of the technique to enhance classification strategies. Applications include recognising everyday human activities, distinguishing drone from birds, and identifying different types of vehicles. However, noisy time-frequency spectrograms can significantly affect the performance of the classifier and must be tackled using appropriate denoising algorithms. In recent years, deep learning algorithms have spawned many deep neural network-based denoising algorithms. For these methods, noise modelling is the most important part and is used to assist in training. In this paper, we decompose the problem and propose a novel denoising scheme: first, a Generative Adversarial Network (GAN) is used to learn the noise distribution and correlation from the real-world environment; then, a simulator is used to generate clean Micro-Doppler spectrograms; finally, the generated noise and clean simulation data are combined as the training data to train a Convolutional Neural Network (CNN) denoiser. In experiments, we qualitatively and quantitatively analyzed this procedure on both simulation and measurement data. Besides, the idea of learning from natural noise can be applied well to other existing frameworks and demonstrate greater performance than other noise models.
Abstract:Action monitoring in a home environment provides important information for health monitoring and may serve as input into a smart home environment. Visual analysis using cameras can recognise actions in a complex scene, such as someones living room. However, although there the huge potential benefits and importance, specifically for health, cameras are not widely accepted because of privacy concerns. This paper recognises human activities using a sensor that retains privacy. The sensor is not only different by being thermal, but it is also of low resolution: 8x8 pixels. The combination of the thermal imaging, and the low spatial resolution ensures the privacy of individuals. We present an approach to recognise daily activities using this sensor based on a discrete cosine transform. We evaluate the proposed method on a state-of-the-art dataset and experimentally confirm that our approach outperforms the baseline method. We also introduce a new dataset, and evaluate the method on it. Here we show that the sensor is considered better at detecting the occurrence of falls and Activities of Daily Living. Our method achieves an overall accuracy of 87.50% across 7 activities with a fall detection sensitivity of 100% and specificity of 99.21%.