Abstract:This paper proposes small and efficient machine learning models (TinyML) for resource-constrained edge devices, specifically for on-device indoor localisation. Typical approaches for indoor localisation rely on centralised remote processing of data transmitted from lower powered devices such as wearables. However, there are several benefits for moving this to the edge device itself, including increased battery life, enhanced privacy, reduced latency and lowered operational costs, all of which are key for common applications such as health monitoring. The work focuses on model compression techniques, including quantization and knowledge distillation, to significantly reduce the model size while maintaining high predictive performance. We base our work on a large state-of-the-art transformer-based model and seek to deploy it within low-power MCUs. We also propose a state-space-based architecture using Mamba as a more compact alternative to the transformer. Our results show that the quantized transformer model performs well within a 64 KB RAM constraint, achieving an effective balance between model size and localisation precision. Additionally, the compact Mamba model has strong performance under even tighter constraints, such as a 32 KB of RAM, without the need for model compression, making it a viable option for more resource-limited environments. We demonstrate that, through our framework, it is feasible to deploy advanced indoor localisation models onto low-power MCUs with restricted memory limitations. The application of these TinyML models in healthcare has the potential to revolutionize patient monitoring by providing accurate, real-time location data while minimizing power consumption, increasing data privacy, improving latency and reducing infrastructure costs.
Abstract:With the growing demand for health monitoring systems, in-home localisation is essential for tracking patient conditions. The unique spatial characteristics of each house required annotated data for Bluetooth Low Energy (BLE) Received Signal Strength Indicator (RSSI)-based monitoring system. However, collecting annotated training data is time-consuming, particularly for patients with limited health conditions. To address this, we propose Conditional Generative Adversarial Networks (ConGAN)-based augmentation, combined with our transfer learning framework (T-ConGAN), to enable the transfer of generic RSSI information between different homes, even when data is collected using different experimental protocols. This enhances the performance and scalability of such intelligent systems by reducing the need for annotation in each home. We are the first to demonstrate that BLE RSSI data can be shared across different homes, and that shared information can improve the indoor localisation performance. Our T-ConGAN enhances the macro F1 score of room-level indoor localisation by up to 12.2%, with a remarkable 51% improvement in challenging areas such as stairways or outside spaces. This state-of-the-art RSSI augmentation model significantly enhances the robustness of in-home health monitoring systems.
Abstract:Parkinson's disease (PD) is a slowly progressive, debilitating neurodegenerative disease which causes motor symptoms including gait dysfunction. Motor fluctuations are alterations between periods with a positive response to levodopa therapy ("on") and periods marked by re-emergency of PD symptoms ("off") as the response to medication wears off. These fluctuations often affect gait speed and they increase in their disabling impact as PD progresses. To improve the effectiveness of current indoor localisation methods, a transformer-based approach utilising dual modalities which provide complementary views of movement, Received Signal Strength Indicator (RSSI) and accelerometer data from wearable devices, is proposed. A sub-objective aims to evaluate whether indoor localisation, including its in-home gait speed features (i.e. the time taken to walk between rooms), could be used to evaluate motor fluctuations by detecting whether the person with PD is taking levodopa medications or withholding them. To properly evaluate our proposed method, we use a free-living dataset where the movements and mobility are greatly varied and unstructured as expected in real-world conditions. 24 participants lived in pairs (consisting of one person with PD, one control) for five days in a smart home with various sensors. Our evaluation on the resulting dataset demonstrates that our proposed network outperforms other methods for indoor localisation. The sub-objective evaluation shows that precise room-level localisation predictions, transformed into in-home gait speed features, produce accurate predictions on whether the PD participant is taking or withholding their medications.
Abstract:In supervised learning, low quality annotations lead to poorly performing classification and detection models, while also rendering evaluation unreliable. This is particularly apparent on temporal data, where annotation quality is affected by multiple factors. For example, in the post-hoc self-reporting of daily activities, cognitive biases are one of the most common ingredients. In particular, reporting the start and duration of an activity after its finalisation may incorporate biases introduced by personal time perceptions, as well as the imprecision and lack of granularity due to time rounding. Here we propose a method to model human biases on temporal annotations and argue for the use of soft labels. Experimental results in synthetic data show that soft labels provide a better approximation of the ground truth for several metrics. We showcase the method on a real dataset of daily activities.
Abstract:We propose a novel approach to multimodal sensor fusion for Ambient Assisted Living (AAL) which takes advantage of learning using privileged information (LUPI). We address two major shortcomings of standard multimodal approaches, limited area coverage and reduced reliability. Our new framework fuses the concept of modality hallucination with triplet learning to train a model with different modalities to handle missing sensors at inference time. We evaluate the proposed model on inertial data from a wearable accelerometer device, using RGB videos and skeletons as privileged modalities, and show an improvement of accuracy of an average 6.6% on the UTD-MHAD dataset and an average 5.5% on the Berkeley MHAD dataset, reaching a new state-of-the-art for inertial-only classification accuracy on these datasets. We validate our framework through several ablation studies.
Abstract:Parkinson's disease (PD) is a slowly progressive debilitating neurodegenerative disease which is prominently characterised by motor symptoms. Indoor localisation, including number and speed of room to room transitions, provides a proxy outcome which represents mobility and could be used as a digital biomarker to quantify how mobility changes as this disease progresses. We use data collected from 10 people with Parkinson's, and 10 controls, each of whom lived for five days in a smart home with various sensors. In order to more effectively localise them indoors, we propose a transformer-based approach utilizing two data modalities, Received Signal Strength Indicator (RSSI) and accelerometer data from wearable devices, which provide complementary views of movement. Our approach makes asymmetric and dynamic correlations by a) learning temporal correlations at different scales and levels, and b) utilizing various gating mechanisms to select relevant features within modality and suppress unnecessary modalities. On a dataset with real patients, we demonstrate that our proposed method gives an average accuracy of 89.9%, outperforming competitors. We also show that our model is able to better predict in-home mobility for people with Parkinson's with an average offset of 1.13 seconds to ground truth.
Abstract:This paper introduces a Wi-Fi signal based passive wireless sensing system that has the capability to detect diverse indoor human movements, from whole body motions to limb movements and including breathing movements of the chest. The real time signal processing used for human body motion sensing and software defined radio demo system are described and verified in practical experiments scenarios, which include detection of through-wall human body movement, hand gesture or tremor, and even respiration. The experiment results offer potential for promising healthcare applications using Wi-Fi passive sensing in the home to monitor daily activities, to gather health data and detect emergency situations.
Abstract:This paper presents a comprehensive dataset intended to evaluate passive Human Activity Recognition (HAR) and localization techniques with measurements obtained from synchronized Radio-Frequency (RF) devices and vision-based sensors. The dataset consists of RF data including Channel State Information (CSI) extracted from a WiFi Network Interface Card (NIC), Passive WiFi Radar (PWR) built upon a Software Defined Radio (SDR) platform, and Ultra-Wideband (UWB) signals acquired via commercial off-the-shelf hardware. It also consists of vision/Infra-red based data acquired from Kinect sensors. Approximately 8 hours of annotated measurements are provided, which are collected across two rooms from 6 participants performing 6 daily activities. This dataset can be exploited to advance WiFi and vision-based HAR, for example, using pattern recognition, skeletal representation, deep learning algorithms or other novel approaches to accurately recognize human activities. Furthermore, it can potentially be used to passively track a human in an indoor environment. Such datasets are key tools required for the development of new algorithms and methods in the context of smart homes, elderly care, and surveillance applications.
Abstract:There is a pressing need to automatically understand the state and progression of chronic neurological diseases such as dementia. The emergence of state-of-the-art sensing platforms offers unprecedented opportunities for indirect and automatic evaluation of disease state through the lens of behavioural monitoring. This paper specifically seeks to characterise behavioural signatures of mild cognitive impairment (MCI) and Alzheimer's disease (AD) in the \textit{early} stages of the disease. We introduce bespoke behavioural models and analyses of key symptoms and deploy these on a novel dataset of longitudinal sensor data from persons with MCI and AD. We present preliminary findings that show the relationship between levels of sleep quality and wandering can be subtly different between patients in the early stages of dementia and healthy cohabiting controls.
Abstract:Deep clustering has increasingly been demonstrating superiority over conventional shallow clustering algorithms. Deep clustering algorithms usually combine representation learning with deep neural networks to achieve this performance, typically optimizing a clustering and non-clustering loss. In such cases, an autoencoder is typically connected with a clustering network, and the final clustering is jointly learned by both the autoencoder and clustering network. Instead, we propose to learn an autoencoded embedding and then search this further for the underlying manifold. For simplicity, we then cluster this with a shallow clustering algorithm, rather than a deeper network. We study a number of local and global manifold learning methods on both the raw data and autoencoded embedding, concluding that UMAP in our framework is best able to find the most clusterable manifold in the embedding, suggesting local manifold learning on an autoencoded embedding is effective for discovering higher quality discovering clusters. We quantitatively show across a range of image and time-series datasets that our method has competitive performance against the latest deep clustering algorithms, including out-performing current state-of-the-art on several. We postulate that these results show a promising research direction for deep clustering. The code can be found at https://github.com/rymc/n2d