Abstract:In many text-generation problems, users may prefer not only a single response, but a diverse range of high-quality outputs from which to choose. Quality-diversity (QD) search algorithms aim at such outcomes, by continually improving and diversifying a population of candidates. However, the applicability of QD to qualitative domains, like creative writing, has been limited by the difficulty of algorithmically specifying measures of quality and diversity. Interestingly, recent developments in language models (LMs) have enabled guiding search through AI feedback, wherein LMs are prompted in natural language to evaluate qualitative aspects of text. Leveraging this development, we introduce Quality-Diversity through AI Feedback (QDAIF), wherein an evolutionary algorithm applies LMs to both generate variation and evaluate the quality and diversity of candidate text. When assessed on creative writing domains, QDAIF covers more of a specified search space with high-quality samples than do non-QD controls. Further, human evaluation of QDAIF-generated creative texts validates reasonable agreement between AI and human evaluation. Our results thus highlight the potential of AI feedback to guide open-ended search for creative and original solutions, providing a recipe that seemingly generalizes to many domains and modalities. In this way, QDAIF is a step towards AI systems that can independently search, diversify, evaluate, and improve, which are among the core skills underlying human society's capacity for innovation.
Abstract:Reinforcement learning from human feedback (RLHF) has exhibited the potential to enhance the performance of foundation models for qualitative tasks. Despite its promise, its efficacy is often restricted when conceptualized merely as a mechanism to maximize learned reward models of averaged human preferences, especially in areas such as image generation which demand diverse model responses. Meanwhile, quality diversity (QD) algorithms, dedicated to seeking diverse, high-quality solutions, are often constrained by the dependency on manually defined diversity metrics. Interestingly, such limitations of RLHF and QD can be overcome by blending insights from both. This paper introduces Quality Diversity through Human Feedback (QDHF), which employs human feedback for inferring diversity metrics, expanding the applicability of QD algorithms. Empirical results reveal that QDHF outperforms existing QD methods regarding automatic diversity discovery, and matches the search capabilities of QD with human-constructed metrics. Notably, when deployed for a latent space illumination task, QDHF markedly enhances the diversity of images generated by a Diffusion model. The study concludes with an in-depth analysis of QDHF's sample efficiency and the quality of its derived diversity metrics, emphasizing its promise for enhancing exploration and diversity in optimization for complex, open-ended tasks.
Abstract:Open-ended algorithms aim to learn new, interesting behaviors forever. That requires a vast environment search space, but there are thus infinitely many possible tasks. Even after filtering for tasks the current agent can learn (i.e., learning progress), countless learnable yet uninteresting tasks remain (e.g., minor variations of previously learned tasks). An Achilles Heel of open-endedness research is the inability to quantify (and thus prioritize) tasks that are not just learnable, but also $\textit{interesting}$ (e.g., worthwhile and novel). We propose solving this problem by $\textit{Open-endedness via Models of human Notions of Interestingness}$ (OMNI). The insight is that we can utilize large (language) models (LMs) as a model of interestingness (MoI), because they $\textit{already}$ internalize human concepts of interestingness from training on vast amounts of human-generated data, where humans naturally write about what they find interesting or boring. We show that LM-based MoIs improve open-ended learning by focusing on tasks that are both learnable $\textit{and interesting}$, outperforming baselines based on uniform task sampling or learning progress alone. This approach has the potential to dramatically advance the ability to intelligently select which tasks to focus on next (i.e., auto-curricula), and could be seen as AI selecting its own next task to learn, facilitating self-improving AI and AI-Generating Algorithms.
Abstract:This paper pursues the insight that language models naturally enable an intelligent variation operator similar in spirit to evolutionary crossover. In particular, language models of sufficient scale demonstrate in-context learning, i.e. they can learn from associations between a small number of input patterns to generate outputs incorporating such associations (also called few-shot prompting). This ability can be leveraged to form a simple but powerful variation operator, i.e. to prompt a language model with a few text-based genotypes (such as code, plain-text sentences, or equations), and to parse its corresponding output as those genotypes' offspring. The promise of such language model crossover (which is simple to implement and can leverage many different open-source language models) is that it enables a simple mechanism to evolve semantically-rich text representations (with few domain-specific tweaks), and naturally benefits from current progress in language models. Experiments in this paper highlight the versatility of language-model crossover, through evolving binary bit-strings, sentences, equations, text-to-image prompts, and Python code. The conclusion is that language model crossover is a promising method for evolving genomes representable as text.
Abstract:While ML generates much economic value, many of us have problematic relationships with social media and other ML-powered applications. One reason is that ML often optimizes for what we want in the moment, which is easy to quantify but at odds with what is known scientifically about human flourishing. Thus, through its impoverished models of us, ML currently falls far short of its exciting potential, which is for it to help us to reach ours. While there is no consensus on defining human flourishing, from diverse perspectives across psychology, philosophy, and spiritual traditions, love is understood to be one of its primary catalysts. Motivated by this view, this paper explores whether there is a useful conception of love fitting for machines to embody, as historically it has been generative to explore whether a nebulous concept, such as life or intelligence, can be thoughtfully abstracted and reimagined, as in the fields of machine intelligence or artificial life. This paper forwards a candidate conception of machine love, inspired in particular by work in positive psychology and psychotherapy: to provide unconditional support enabling humans to autonomously pursue their own growth and development. Through proof of concept experiments, this paper aims to highlight the need for richer models of human flourishing in ML, provide an example framework through which positive psychology can be combined with ML to realize a rough conception of machine love, and demonstrate that current language models begin to enable embodying qualitative humanistic principles. The conclusion is that though at present ML may often serve to addict, distract, or divide us, an alternative path may be opening up: We may align ML to support our growth, through it helping us to align ourselves towards our highest aspirations.
Abstract:This paper pursues the insight that large language models (LLMs) trained to generate code can vastly improve the effectiveness of mutation operators applied to programs in genetic programming (GP). Because such LLMs benefit from training data that includes sequential changes and modifications, they can approximate likely changes that humans would make. To highlight the breadth of implications of such evolution through large models (ELM), in the main experiment ELM combined with MAP-Elites generates hundreds of thousands of functional examples of Python programs that output working ambulating robots in the Sodarace domain, which the original LLM had never seen in pre-training. These examples then help to bootstrap training a new conditional language model that can output the right walker for a particular terrain. The ability to bootstrap new models that can output appropriate artifacts for a given context in a domain where zero training data was previously available carries implications for open-endedness, deep learning, and reinforcement learning. These implications are explored here in depth in the hope of inspiring new directions of research now opened up by ELM.
Abstract:This report documents ideas for improving the field of machine learning, which arose from discussions at the ML Retrospectives workshop at NeurIPS 2019. The goal of the report is to disseminate these ideas more broadly, and in turn encourage continuing discussion about how the field could improve along these axes. We focus on topics that were most discussed at the workshop: incentives for encouraging alternate forms of scholarship, re-structuring the review process, participation from academia and industry, and how we might better train computer scientists as scientists. Videos from the workshop can be accessed at https://slideslive.com/neurips/west-114-115-retrospectives-a-venue-for-selfreflection-in-ml-research
Abstract:Artificial life originated and has long studied the topic of open-ended evolution, which seeks the principles underlying artificial systems that innovate continually, inspired by biological evolution. Recently, interest has grown within the broader field of AI in a generalization of open-ended evolution, here called open-ended search, wherein such questions of open-endedness are explored for advancing AI, whatever the nature of the underlying search algorithm (e.g. evolutionary or gradient-based). For example, open-ended search might design new architectures for neural networks, new reinforcement learning algorithms, or most ambitiously, aim at designing artificial general intelligence. This paper proposes that open-ended evolution and artificial life have much to contribute towards the understanding of open-ended AI, focusing here in particular on the safety of open-ended search. The idea is that AI systems are increasingly applied in the real world, often producing unintended harms in the process, which motivates the growing field of AI safety. This paper argues that open-ended AI has its own safety challenges, in particular, whether the creativity of open-ended systems can be productively and predictably controlled. This paper explains how unique safety problems manifest in open-ended search, and suggests concrete contributions and research questions to explore them. The hope is to inspire progress towards creative, useful, and safe open-ended search algorithms.
Abstract:An ambitious goal for artificial intelligence is to create agents that behave ethically: The capacity to abide by human moral norms would greatly expand the context in which autonomous agents could be practically and safely deployed. While ethical agents could be trained through reinforcement, by rewarding correct behavior under a specific moral theory (e.g. utilitarianism), there remains widespread disagreement (both societally and among moral philosophers) about the nature of morality and what ethical theory (if any) is objectively correct. Acknowledging such disagreement, recent work in moral philosophy proposes that ethical behavior requires acting under moral uncertainty, i.e. to take into account when acting that one's credence is split across several plausible ethical theories. Inspired by such work, this paper proposes a formalism that translates such insights to the field of reinforcement learning. Demonstrating the formalism's potential, we then train agents in simple environments to act under moral uncertainty, highlighting how such uncertainty can help curb extreme behavior from commitment to single theories. The overall aim is to draw productive connections from the fields of moral philosophy and machine ethics to that of machine learning, to inspire further research by highlighting a spectrum of machine learning research questions relevant to training ethically capable reinforcement learning agents.
Abstract:Neural Architecture Search (NAS) explores a large space of architectural motifs -- a compute-intensive process that often involves ground-truth evaluation of each motif by instantiating it within a large network, and training and evaluating the network with thousands of domain-specific data samples. Inspired by how biological motifs such as cells are sometimes extracted from their natural environment and studied in an artificial Petri dish setting, this paper proposes the Synthetic Petri Dish model for evaluating architectural motifs. In the Synthetic Petri Dish, architectural motifs are instantiated in very small networks and evaluated using very few learned synthetic data samples (to effectively approximate performance in the full problem). The relative performance of motifs in the Synthetic Petri Dish can substitute for their ground-truth performance, thus accelerating the most expensive step of NAS. Unlike other neural network-based prediction models that parse the structure of the motif to estimate its performance, the Synthetic Petri Dish predicts motif performance by training the actual motif in an artificial setting, thus deriving predictions from its true intrinsic properties. Experiments in this paper demonstrate that the Synthetic Petri Dish can therefore predict the performance of new motifs with significantly higher accuracy, especially when insufficient ground truth data is available. Our hope is that this work can inspire a new research direction in studying the performance of extracted components of models in an alternative controlled setting.