Abstract:Diffusion models have shown the great potential in the point cloud registration (PCR) task, especially for enhancing the robustness to challenging cases. However, existing diffusion-based PCR methods primarily focus on instance-level scenarios and struggle with outdoor LiDAR points, where the sparsity, irregularity, and huge point scale inherent in LiDAR points pose challenges to establishing dense global point-to-point correspondences. To address this issue, we propose a novel framework named EADReg for efficient and robust registration of LiDAR point clouds based on autoregressive diffusion models. EADReg follows a coarse-to-fine registration paradigm. In the coarse stage, we employ a Bi-directional Gaussian Mixture Model (BGMM) to reject outlier points and obtain purified point cloud pairs. BGMM establishes correspondences between the Gaussian Mixture Models (GMMs) from the source and target frames, enabling reliable coarse registration based on filtered features and geometric information. In the fine stage, we treat diffusion-based PCR as an autoregressive process to generate robust point correspondences, which are then iteratively refined on upper layers. Despite common criticisms of diffusion-based methods regarding inference speed, EADReg achieves runtime comparable to convolutional-based methods. Extensive experiments on the KITTI and NuScenes benchmark datasets highlight the state-of-the-art performance of our proposed method. Codes will be released upon publication.
Abstract:Point Cloud Interpolation confronts challenges from point sparsity, complex spatiotemporal dynamics, and the difficulty of deriving complete 3D point clouds from sparse temporal information. This paper presents NeuroGauss4D-PCI, which excels at modeling complex non-rigid deformations across varied dynamic scenes. The method begins with an iterative Gaussian cloud soft clustering module, offering structured temporal point cloud representations. The proposed temporal radial basis function Gaussian residual utilizes Gaussian parameter interpolation over time, enabling smooth parameter transitions and capturing temporal residuals of Gaussian distributions. Additionally, a 4D Gaussian deformation field tracks the evolution of these parameters, creating continuous spatiotemporal deformation fields. A 4D neural field transforms low-dimensional spatiotemporal coordinates ($x,y,z,t$) into a high-dimensional latent space. Finally, we adaptively and efficiently fuse the latent features from neural fields and the geometric features from Gaussian deformation fields. NeuroGauss4D-PCI outperforms existing methods in point cloud frame interpolation, delivering leading performance on both object-level (DHB) and large-scale autonomous driving datasets (NL-Drive), with scalability to auto-labeling and point cloud densification tasks. The source code is released at https://github.com/jiangchaokang/NeuroGauss4D-PCI.
Abstract:Point cloud videos effectively capture real-world spatial geometries and temporal dynamics, which are essential for enabling intelligent agents to understand the dynamically changing 3D world we live in. Although static 3D point cloud processing has witnessed significant advancements, designing an effective 4D point cloud video backbone remains challenging, mainly due to the irregular and unordered distribution of points and temporal inconsistencies across frames. Moreover, recent state-of-the-art 4D backbones predominantly rely on transformer-based architectures, which commonly suffer from large computational costs due to their quadratic complexity, particularly when processing long video sequences. To address these challenges, we propose a novel 4D point cloud video understanding backbone based on the recently advanced State Space Models (SSMs). Specifically, our backbone begins by disentangling space and time in raw 4D sequences, and then establishing spatio-temporal correlations using our newly developed Intra-frame Spatial Mamba and Inter-frame Temporal Mamba blocks. The Intra-frame Spatial Mamba module is designed to encode locally similar or related geometric structures within a certain temporal searching stride, which can effectively capture short-term dynamics. Subsequently, these locally correlated tokens are delivered to the Inter-frame Temporal Mamba module, which globally integrates point features across the entire video with linear complexity, further establishing long-range motion dependencies. Experimental results on human action recognition and 4D semantic segmentation tasks demonstrate the superiority of our proposed method. Especially, for long video sequences, our proposed Mamba-based method has an 87.5% GPU memory reduction, 5.36 times speed-up, and much higher accuracy (up to +10.4%) compared with transformer-based counterparts on MSR-Action3D dataset.
Abstract:Information inside visual and LiDAR data is well complementary derived from the fine-grained texture of images and massive geometric information in point clouds. However, it remains challenging to explore effective visual-LiDAR fusion, mainly due to the intrinsic data structure inconsistency between two modalities: Images are regular and dense, but LiDAR points are unordered and sparse. To address the problem, we propose a local-to-global fusion network with bi-directional structure alignment. To obtain locally fused features, we project points onto image plane as cluster centers and cluster image pixels around each center. Image pixels are pre-organized as pseudo points for image-to-point structure alignment. Then, we convert points to pseudo images by cylindrical projection (point-to-image structure alignment) and perform adaptive global feature fusion between point features with local fused features. Our method achieves state-of-the-art performance on KITTI odometry and FlyingThings3D scene flow datasets compared to both single-modal and multi-modal methods. Codes will be released later.
Abstract:Recently, state space model (SSM) has gained great attention due to its promising performance, linear complexity, and long sequence modeling ability in both language and image domains. However, it is non-trivial to extend SSM to the point cloud field, because of the causality requirement of SSM and the disorder and irregularity nature of point clouds. In this paper, we propose a novel SSM-based point cloud processing backbone, named Point Mamba, with a causality-aware ordering mechanism. To construct the causal dependency relationship, we design an octree-based ordering strategy on raw irregular points, globally sorting points in a z-order sequence and also retaining their spatial proximity. Our method achieves state-of-the-art performance compared with transformer-based counterparts, with 93.4% accuracy and 75.7 mIOU respectively on the ModelNet40 classification dataset and ScanNet semantic segmentation dataset. Furthermore, our Point Mamba has linear complexity, which is more efficient than transformer-based methods. Our method demonstrates the great potential that SSM can serve as a generic backbone in point cloud understanding. Codes are released at https://github.com/IRMVLab/Point-Mamba.
Abstract:We propose SemGauss-SLAM, the first semantic SLAM system utilizing 3D Gaussian representation, that enables accurate 3D semantic mapping, robust camera tracking, and high-quality rendering in real-time. In this system, we incorporate semantic feature embedding into 3D Gaussian representation, which effectively encodes semantic information within the spatial layout of the environment for precise semantic scene representation. Furthermore, we propose feature-level loss for updating 3D Gaussian representation, enabling higher-level guidance for 3D Gaussian optimization. In addition, to reduce cumulative drift and improve reconstruction accuracy, we introduce semantic-informed bundle adjustment leveraging semantic associations for joint optimization of 3D Gaussian representation and camera poses, leading to more robust tracking and consistent mapping. Our SemGauss-SLAM method demonstrates superior performance over existing dense semantic SLAM methods in terms of mapping and tracking accuracy on Replica and ScanNet datasets, while also showing excellent capabilities in novel-view semantic synthesis and 3D semantic mapping.
Abstract:Learning 3D scene flow from LiDAR point clouds presents significant difficulties, including poor generalization from synthetic datasets to real scenes, scarcity of real-world 3D labels, and poor performance on real sparse LiDAR point clouds. We present a novel approach from the perspective of auto-labelling, aiming to generate a large number of 3D scene flow pseudo labels for real-world LiDAR point clouds. Specifically, we employ the assumption of rigid body motion to simulate potential object-level rigid movements in autonomous driving scenarios. By updating different motion attributes for multiple anchor boxes, the rigid motion decomposition is obtained for the whole scene. Furthermore, we developed a novel 3D scene flow data augmentation method for global and local motion. By perfectly synthesizing target point clouds based on augmented motion parameters, we easily obtain lots of 3D scene flow labels in point clouds highly consistent with real scenarios. On multiple real-world datasets including LiDAR KITTI, nuScenes, and Argoverse, our method outperforms all previous supervised and unsupervised methods without requiring manual labelling. Impressively, our method achieves a tenfold reduction in EPE3D metric on the LiDAR KITTI dataset, reducing it from $0.190m$ to a mere $0.008m$ error.
Abstract:Scene flow estimation, which aims to predict per-point 3D displacements of dynamic scenes, is a fundamental task in the computer vision field. However, previous works commonly suffer from unreliable correlation caused by locally constrained searching ranges, and struggle with accumulated inaccuracy arising from the coarse-to-fine structure. To alleviate these problems, we propose a novel uncertainty-aware scene flow estimation network (DifFlow3D) with the diffusion probabilistic model. Iterative diffusion-based refinement is designed to enhance the correlation robustness and resilience to challenging cases, e.g., dynamics, noisy inputs, repetitive patterns, etc. To restrain the generation diversity, three key flow-related features are leveraged as conditions in our diffusion model. Furthermore, we also develop an uncertainty estimation module within diffusion to evaluate the reliability of estimated scene flow. Our DifFlow3D achieves state-of-the-art performance, with 6.7\% and 19.1\% EPE3D reduction respectively on FlyingThings3D and KITTI 2015 datasets. Notably, our method achieves an unprecedented millimeter-level accuracy (0.0089m in EPE3D) on the KITTI dataset. Additionally, our diffusion-based refinement paradigm can be readily integrated as a plug-and-play module into existing scene flow networks, significantly increasing their estimation accuracy. Codes will be released later.
Abstract:LiDAR point cloud semantic segmentation enables the robots to obtain fine-grained semantic information of the surrounding environment. Recently, many works project the point cloud onto the 2D image and adopt the 2D Convolutional Neural Networks (CNNs) or vision transformer for LiDAR point cloud semantic segmentation. However, since more than one point can be projected onto the same 2D position but only one point can be preserved, the previous 2D image-based segmentation methods suffer from inevitable quantized information loss. To avoid quantized information loss, in this paper, we propose a novel spherical frustum structure. The points projected onto the same 2D position are preserved in the spherical frustums. Moreover, we propose a memory-efficient hash-based representation of spherical frustums. Through the hash-based representation, we propose the Spherical Frustum sparse Convolution (SFC) and Frustum Fast Point Sampling (F2PS) to convolve and sample the points stored in spherical frustums respectively. Finally, we present the Spherical Frustum sparse Convolution Network (SFCNet) to adopt 2D CNNs for LiDAR point cloud semantic segmentation without quantized information loss. Extensive experiments on the SemanticKITTI and nuScenes datasets demonstrate that our SFCNet outperforms the 2D image-based semantic segmentation methods based on conventional spherical projection. The source code will be released later.
Abstract:We propose SNI-SLAM, a semantic SLAM system utilizing neural implicit representation, that simultaneously performs accurate semantic mapping, high-quality surface reconstruction, and robust camera tracking. In this system, we introduce hierarchical semantic representation to allow multi-level semantic comprehension for top-down structured semantic mapping of the scene. In addition, to fully utilize the correlation between multiple attributes of the environment, we integrate appearance, geometry and semantic features through cross-attention for feature collaboration. This strategy enables a more multifaceted understanding of the environment, thereby allowing SNI-SLAM to remain robust even when single attribute is defective. Then, we design an internal fusion-based decoder to obtain semantic, RGB, Truncated Signed Distance Field (TSDF) values from multi-level features for accurate decoding. Furthermore, we propose a feature loss to update the scene representation at the feature level. Compared with low-level losses such as RGB loss and depth loss, our feature loss is capable of guiding the network optimization on a higher-level. Our SNI-SLAM method demonstrates superior performance over all recent NeRF-based SLAM methods in terms of mapping and tracking accuracy on Replica and ScanNet datasets, while also showing excellent capabilities in accurate semantic segmentation and real-time semantic mapping.