Abstract:Compressed sensing MRI seeks to accelerate MRI acquisition processes by sampling fewer k-space measurements and then reconstructing the missing data algorithmically. The success of these approaches often relies on strong priors or learned statistical models. While recent diffusion model-based priors have shown great potential, previous methods typically ignore clinically available metadata (e.g. patient demographics, imaging parameters, slice-specific information). In practice, metadata contains meaningful cues about the anatomy and acquisition protocol, suggesting it could further constrain the reconstruction problem. In this work, we propose ContextMRI, a text-conditioned diffusion model for MRI that integrates granular metadata into the reconstruction process. We train a pixel-space diffusion model directly on minimally processed, complex-valued MRI images. During inference, metadata is converted into a structured text prompt and fed to the model via CLIP text embeddings. By conditioning the prior on metadata, we unlock more accurate reconstructions and show consistent gains across multiple datasets, acceleration factors, and undersampling patterns. Our experiments demonstrate that increasing the fidelity of metadata, ranging from slice location and contrast to patient age, sex, and pathology, systematically boosts reconstruction performance. This work highlights the untapped potential of leveraging clinical context for inverse problems and opens a new direction for metadata-driven MRI reconstruction.
Abstract:As Classifier-Free Guidance (CFG) has proven effective in conditional diffusion model sampling for improved condition alignment, many applications use a negated CFG term to filter out unwanted features from samples. However, simply negating CFG guidance creates an inverted probability distribution, often distorting samples away from the marginal distribution. Inspired by recent advances in conditional diffusion models for inverse problems, here we present a novel method to enhance negative CFG guidance using contrastive loss. Specifically, our guidance term aligns or repels the denoising direction based on the given condition through contrastive loss, achieving a nearly identical guiding direction to traditional CFG for positive guidance while overcoming the limitations of existing negative guidance methods. Experimental results demonstrate that our approach effectively removes undesirable concepts while maintaining sample quality across diverse scenarios, from simple class conditions to complex and overlapping text prompts.
Abstract:Gradient-based methods are a prototypical family of explainability techniques, especially for image-based models. Nonetheless, they have several shortcomings in that they (1) require white-box access to models, (2) are vulnerable to adversarial attacks, and (3) produce attributions that lie off the image manifold, leading to explanations that are not actually faithful to the model and do not align well with human perception. To overcome these challenges, we introduce Derivative-Free Diffusion Manifold-Constrainted Gradients (FreeMCG), a novel method that serves as an improved basis for explainability of a given neural network than the traditional gradient. Specifically, by leveraging ensemble Kalman filters and diffusion models, we derive a derivative-free approximation of the model's gradient projected onto the data manifold, requiring access only to the model's outputs. We demonstrate the effectiveness of FreeMCG by applying it to both counterfactual generation and feature attribution, which have traditionally been treated as distinct tasks. Through comprehensive evaluation on both tasks, counterfactual explanation and feature attribution, we show that our method yields state-of-the-art results while preserving the essential properties expected of XAI tools.
Abstract:Category-agnostic pose estimation (CAPE) has traditionally relied on support images with annotated keypoints, a process that is often cumbersome and may fail to fully capture the necessary correspondences across diverse object categories. Recent efforts have begun exploring the use of text-based queries, where the need for support keypoints is eliminated. However, the optimal use of textual descriptions for keypoints remains an underexplored area. In this work, we introduce CapeLLM, a novel approach that leverages a text-based multimodal large language model (MLLM) for CAPE. Our method only employs query image and detailed text descriptions as an input to estimate category-agnostic keypoints. We conduct extensive experiments to systematically explore the design space of LLM-based CAPE, investigating factors such as choosing the optimal description for keypoints, neural network architectures, and training strategies. Thanks to the advanced reasoning capabilities of the pre-trained MLLM, CapeLLM demonstrates superior generalization and robust performance. Our approach sets a new state-of-the-art on the MP-100 benchmark in the challenging 1-shot setting, marking a significant advancement in the field of category-agnostic pose estimation.
Abstract:Autoregressive models (ARMs) and diffusion models (DMs) represent two leading paradigms in generative modeling, each excelling in distinct areas: ARMs in global context modeling and long-sequence generation, and DMs in generating high-quality local contexts, especially for continuous data such as images and short videos. However, ARMs often suffer from exponential error accumulation over long sequences, leading to physically implausible results, while DMs are limited by their local context generation capabilities. In this work, we introduce Autoregressive Coherent multimodal generation with Diffusion Correction (ACDC), a zero-shot approach that combines the strengths of both ARMs and DMs at the inference stage without the need for additional fine-tuning. ACDC leverages ARMs for global context generation and memory-conditioned DMs for local correction, ensuring high-quality outputs by correcting artifacts in generated multimodal tokens. In particular, we propose a memory module based on large language models (LLMs) that dynamically adjusts the conditioning texts for the DMs, preserving crucial global context information. Our experiments on multimodal tasks, including coherent multi-frame story generation and autoregressive video generation, demonstrate that ACDC effectively mitigates the accumulation of errors and significantly enhances the quality of generated outputs, achieving superior performance while remaining agnostic to specific ARM and DM architectures. Project page: https://acdc2025.github.io/
Abstract:We propose a variational inference approach to sample from the posterior distribution for solving inverse problems. From a pre-trained diffusion model, our approach trains a conditional flow model to minimize the divergence between the proposal variational distribution and the posterior distribution implicitly defined through the diffusion model. Once trained, the flow model is capable of sampling from the posterior distribution with a single NFE, amortized with respect to the measurement. The proposed method paves a new path for distilling a diffusion prior for efficient posterior sampling. We show that our method is applicable to standard signals in Euclidean space, as well as signals on manifold.
Abstract:Recent inverse problem solvers that leverage generative diffusion priors have garnered significant attention due to their exceptional quality. However, adaptation of the prior is necessary when there exists a discrepancy between the training and testing distributions. In this work, we propose deep diffusion image prior (DDIP), which generalizes the recent adaptation method of SCD by introducing a formal connection to the deep image prior. Under this framework, we propose an efficient adaptation method dubbed D3IP, specified for 3D measurements, which accelerates DDIP by orders of magnitude while achieving superior performance. D3IP enables seamless integration of 3D inverse solvers and thus leads to coherent 3D reconstruction. Moreover, we show that meta-learning techniques can also be applied to yield even better performance. We show that our method is capable of solving diverse 3D reconstructive tasks from the generative prior trained only with phantom images that are vastly different from the training set, opening up new opportunities of applying diffusion inverse solvers even when training with gold standard data is impossible. Code: https://github.com/HJ-harry/DDIP3D
Abstract:Classifier-free guidance (CFG) is a fundamental tool in modern diffusion models for text-guided generation. Although effective, CFG has notable drawbacks. For instance, DDIM with CFG lacks invertibility, complicating image editing; furthermore, high guidance scales, essential for high-quality outputs, frequently result in issues like mode collapse. Contrary to the widespread belief that these are inherent limitations of diffusion models, this paper reveals that the problems actually stem from the off-manifold phenomenon associated with CFG, rather than the diffusion models themselves. More specifically, inspired by the recent advancements of diffusion model-based inverse problem solvers (DIS), we reformulate text-guidance as an inverse problem with a text-conditioned score matching loss, and develop CFG++, a novel approach that tackles the off-manifold challenges inherent in traditional CFG. CFG++ features a surprisingly simple fix to CFG, yet it offers significant improvements, including better sample quality for text-to-image generation, invertibility, smaller guidance scales, reduced mode collapse, etc. Furthermore, CFG++ enables seamless interpolation between unconditional and conditional sampling at lower guidance scales, consistently outperforming traditional CFG at all scales. Experimental results confirm that our method significantly enhances performance in text-to-image generation, DDIM inversion, editing, and solving inverse problems, suggesting a wide-ranging impact and potential applications in various fields that utilize text guidance. Project Page: https://cfgpp-diffusion.github.io/.
Abstract:As advancements in the field of breast cancer treatment continue to progress, the assessment of post-surgical cosmetic outcomes has gained increasing significance due to its substantial impact on patients' quality of life. However, evaluating breast cosmesis presents challenges due to the inherently subjective nature of expert labeling. In this study, we present a novel automated approach, Attention-Guided Denoising Diffusion Anomaly Detection (AG-DDAD), designed to assess breast cosmesis following surgery, addressing the limitations of conventional supervised learning and existing anomaly detection models. Our approach leverages the attention mechanism of the distillation with no label (DINO) self-supervised Vision Transformer (ViT) in combination with a diffusion model to achieve high-quality image reconstruction and precise transformation of discriminative regions. By training the diffusion model on unlabeled data predominantly with normal cosmesis, we adopt an unsupervised anomaly detection perspective to automatically score the cosmesis. Real-world data experiments demonstrate the effectiveness of our method, providing visually appealing representations and quantifiable scores for cosmesis evaluation. Compared to commonly used rule-based programs, our fully automated approach eliminates the need for manual annotations and offers objective evaluation. Moreover, our anomaly detection model exhibits state-of-the-art performance, surpassing existing models in accuracy. Going beyond the scope of breast cosmesis, our research represents a significant advancement in unsupervised anomaly detection within the medical domain, thereby paving the way for future investigations.
Abstract:The recent advent of diffusion models has led to significant progress in solving inverse problems, leveraging these models as effective generative priors. Nonetheless, challenges related to the ill-posed nature of such problems remain, often due to inherent ambiguities in measurements. Drawing inspiration from the human ability to resolve visual ambiguities through perceptual biases, here we introduce a novel latent diffusion inverse solver by incorporating regularization by texts (TReg). Specifically, TReg applies the textual description of the preconception of the solution during the reverse sampling phase, of which description isndynamically reinforced through null-text optimization for adaptive negation. Our comprehensive experimental results demonstrate that TReg successfully mitigates ambiguity in latent diffusion inverse solvers, enhancing their effectiveness and accuracy.