Abstract:We propose VideoRFSplat, a direct text-to-3D model leveraging a video generation model to generate realistic 3D Gaussian Splatting (3DGS) for unbounded real-world scenes. To generate diverse camera poses and unbounded spatial extent of real-world scenes, while ensuring generalization to arbitrary text prompts, previous methods fine-tune 2D generative models to jointly model camera poses and multi-view images. However, these methods suffer from instability when extending 2D generative models to joint modeling due to the modality gap, which necessitates additional models to stabilize training and inference. In this work, we propose an architecture and a sampling strategy to jointly model multi-view images and camera poses when fine-tuning a video generation model. Our core idea is a dual-stream architecture that attaches a dedicated pose generation model alongside a pre-trained video generation model via communication blocks, generating multi-view images and camera poses through separate streams. This design reduces interference between the pose and image modalities. Additionally, we propose an asynchronous sampling strategy that denoises camera poses faster than multi-view images, allowing rapidly denoised poses to condition multi-view generation, reducing mutual ambiguity and enhancing cross-modal consistency. Trained on multiple large-scale real-world datasets (RealEstate10K, MVImgNet, DL3DV-10K, ACID), VideoRFSplat outperforms existing text-to-3D direct generation methods that heavily depend on post-hoc refinement via score distillation sampling, achieving superior results without such refinement.
Abstract:Recent progress in 3D/4D scene generation emphasizes the importance of physical alignment throughout video generation and scene reconstruction. However, existing methods improve the alignment separately at each stage, making it difficult to manage subtle misalignments arising from another stage. Here, we present SteerX, a zero-shot inference-time steering method that unifies scene reconstruction into the generation process, tilting data distributions toward better geometric alignment. To this end, we introduce two geometric reward functions for 3D/4D scene generation by using pose-free feed-forward scene reconstruction models. Through extensive experiments, we demonstrate the effectiveness of SteerX in improving 3D/4D scene generation.
Abstract:We introduce a foundational model for brain dynamics that utilizes stochastic optimal control (SOC) and amortized inference. Our method features a continuous-discrete state space model (SSM) that can robustly handle the intricate and noisy nature of fMRI signals. To address computational limitations, we implement an approximation strategy grounded in the SOC framework. Additionally, we present a simulation-free latent dynamics approach that employs locally linear approximations, facilitating efficient and scalable inference. For effective representation learning, we derive an Evidence Lower Bound (ELBO) from the SOC formulation, which integrates smoothly with recent advancements in self-supervised learning (SSL), thereby promoting robust and transferable representations. Pre-trained on extensive datasets such as the UKB, our model attains state-of-the-art results across a variety of downstream tasks, including demographic prediction, trait analysis, disease diagnosis, and prognosis. Moreover, evaluating on external datasets such as HCP-A, ABIDE, and ADHD200 further validates its superior abilities and resilience across different demographic and clinical distributions. Our foundational model provides a scalable and efficient approach for deciphering brain dynamics, opening up numerous applications in neuroscience.
Abstract:Compressed sensing MRI seeks to accelerate MRI acquisition processes by sampling fewer k-space measurements and then reconstructing the missing data algorithmically. The success of these approaches often relies on strong priors or learned statistical models. While recent diffusion model-based priors have shown great potential, previous methods typically ignore clinically available metadata (e.g. patient demographics, imaging parameters, slice-specific information). In practice, metadata contains meaningful cues about the anatomy and acquisition protocol, suggesting it could further constrain the reconstruction problem. In this work, we propose ContextMRI, a text-conditioned diffusion model for MRI that integrates granular metadata into the reconstruction process. We train a pixel-space diffusion model directly on minimally processed, complex-valued MRI images. During inference, metadata is converted into a structured text prompt and fed to the model via CLIP text embeddings. By conditioning the prior on metadata, we unlock more accurate reconstructions and show consistent gains across multiple datasets, acceleration factors, and undersampling patterns. Our experiments demonstrate that increasing the fidelity of metadata, ranging from slice location and contrast to patient age, sex, and pathology, systematically boosts reconstruction performance. This work highlights the untapped potential of leveraging clinical context for inverse problems and opens a new direction for metadata-driven MRI reconstruction.
Abstract:Recent advances in large language models (LLMs) have accelerated the development of conversational agents capable of generating human-like responses. Since psychiatric assessments typically involve complex conversational interactions between psychiatrists and patients, there is growing interest in developing LLM-based psychiatric assessment conversational agents (PACAs) that aim to simulate the role of psychiatrists in clinical evaluations. However, standardized methods for benchmarking the clinical appropriateness of PACAs' interaction with patients still remain underexplored. Here, we propose PSYCHE, a novel framework designed to enable the 1) clinically relevant, 2) ethically safe, 3) cost-efficient, and 4) quantitative evaluation of PACAs. This is achieved by simulating psychiatric patients based on a multi-faceted psychiatric construct that defines the simulated patients' profiles, histories, and behaviors, which PACAs are expected to assess. We validate the effectiveness of PSYCHE through a study with 10 board-certified psychiatrists, supported by an in-depth analysis of the simulated patient utterances.
Abstract:Acute ischemic stroke (AIS) requires time-critical management, with hours of delayed intervention leading to an irreversible disability of the patient. Since diffusion weighted imaging (DWI) using the magnetic resonance image (MRI) plays a crucial role in the detection of AIS, automated prediction of AIS from DWI has been a research topic of clinical importance. While text radiology reports contain the most relevant clinical information from the image findings, the difficulty of mapping across different modalities has limited the factuality of conventional direct DWI-to-report generation methods. Here, we propose paired image-domain retrieval and text-domain augmentation (PIRTA), a cross-modal retrieval-augmented generation (RAG) framework for providing clinician-interpretative AIS radiology reports with improved factuality. PIRTA mitigates the need for learning cross-modal mapping, which poses difficulty in image-to-text generation, by casting the cross-modal mapping problem as an in-domain retrieval of similar DWI images that have paired ground-truth text radiology reports. By exploiting the retrieved radiology reports to augment the report generation process of the query image, we show by experiments with extensive in-house and public datasets that PIRTA can accurately retrieve relevant reports from 3D DWI images. This approach enables the generation of radiology reports with significantly higher accuracy compared to direct image-to-text generation using state-of-the-art multimodal language models.
Abstract:Category-agnostic pose estimation (CAPE) has traditionally relied on support images with annotated keypoints, a process that is often cumbersome and may fail to fully capture the necessary correspondences across diverse object categories. Recent efforts have begun exploring the use of text-based queries, where the need for support keypoints is eliminated. However, the optimal use of textual descriptions for keypoints remains an underexplored area. In this work, we introduce CapeLLM, a novel approach that leverages a text-based multimodal large language model (MLLM) for CAPE. Our method only employs query image and detailed text descriptions as an input to estimate category-agnostic keypoints. We conduct extensive experiments to systematically explore the design space of LLM-based CAPE, investigating factors such as choosing the optimal description for keypoints, neural network architectures, and training strategies. Thanks to the advanced reasoning capabilities of the pre-trained MLLM, CapeLLM demonstrates superior generalization and robust performance. Our approach sets a new state-of-the-art on the MP-100 benchmark in the challenging 1-shot setting, marking a significant advancement in the field of category-agnostic pose estimation.
Abstract:Recent advancements in Large Language Models (LLMs) have accelerated their usage in various domains. Given the fact that psychiatric interviews are goal-oriented and structured dialogues between the professional interviewer and the interviewee, it is one of the most underexplored areas where LLMs can contribute substantial value. Here, we explore the use of LLMs for enhancing psychiatric interviews, by analyzing counseling data from North Korean defectors with traumatic events and mental health issues. Specifically, we investigate whether LLMs can (1) delineate the part of the conversation that suggests psychiatric symptoms and name the symptoms, and (2) summarize stressors and symptoms, based on the interview dialogue transcript. Here, the transcript data was labeled by mental health experts for training and evaluation of LLMs. Our experimental results show that appropriately prompted LLMs can achieve high performance on both the symptom delineation task and the summarization task. This research contributes to the nascent field of applying LLMs to psychiatric interview and demonstrates their potential effectiveness in aiding mental health practitioners.
Abstract:Improving the accessibility of psychotherapy with the aid of Large Language Models (LLMs) is garnering a significant attention in recent years. Recognizing cognitive distortions from the interviewee's utterances can be an essential part of psychotherapy, especially for cognitive behavioral therapy. In this paper, we propose ERD, which improves LLM-based cognitive distortion classification performance with the aid of additional modules of (1) extracting the parts related to cognitive distortion, and (2) debating the reasoning steps by multiple agents. Our experimental results on a public dataset show that ERD improves the multi-class F1 score as well as binary specificity score. Regarding the latter score, it turns out that our method is effective in debiasing the baseline method which has high false positive rate, especially when the summary of multi-agent debate is provided to LLMs.
Abstract:Graph Neural Networks (GNNs) have shown promise in learning dynamic functional connectivity for distinguishing phenotypes from human brain networks. However, obtaining extensive labeled clinical data for training is often resource-intensive, making practical application difficult. Leveraging unlabeled data thus becomes crucial for representation learning in a label-scarce setting. Although generative self-supervised learning techniques, especially masked autoencoders, have shown promising results in representation learning in various domains, their application to dynamic graphs for dynamic functional connectivity remains underexplored, facing challenges in capturing high-level semantic representations. Here, we introduce the Spatio-Temporal Joint Embedding Masked Autoencoder (ST-JEMA), drawing inspiration from the Joint Embedding Predictive Architecture (JEPA) in computer vision. ST-JEMA employs a JEPA-inspired strategy for reconstructing dynamic graphs, which enables the learning of higher-level semantic representations considering temporal perspectives, addressing the challenges in fMRI data representation learning. Utilizing the large-scale UK Biobank dataset for self-supervised learning, ST-JEMA shows exceptional representation learning performance on dynamic functional connectivity demonstrating superiority over previous methods in predicting phenotypes and psychiatric diagnoses across eight benchmark fMRI datasets even with limited samples and effectiveness of temporal reconstruction on missing data scenarios. These findings highlight the potential of our approach as a robust representation learning method for leveraging label-scarce fMRI data.