Abstract:Text-conditioned diffusion models have advanced image and video super-resolution by using prompts as semantic priors, but modern super-resolution pipelines typically rely on latent tiling to scale to high resolutions, where a single global caption causes prompt underspecification. A coarse global prompt often misses localized details (prompt sparsity) and provides locally irrelevant guidance (prompt misguidance) that can be amplified by classifier-free guidance. We propose Tiled Prompts, a unified framework for image and video super-resolution that generates a tile-specific prompt for each latent tile and performs super-resolution under locally text-conditioned posteriors, providing high-information guidance that resolves prompt underspecification with minimal overhead. Experiments on high resolution real-world images and videos show consistent gains in perceptual quality and text alignment, while reducing hallucinations and tile-level artifacts relative to global-prompt baselines.
Abstract:Masked diffusion models (MDMs) are a potential alternative to autoregressive models (ARMs) for language generation, but generation quality depends critically on the generation order. Prior work either hard-codes an ordering (e.g., blockwise left-to-right) or learns an ordering policy for a pretrained MDM, which incurs extra cost and can yield suboptimal solutions due to the two-stage optimization. Motivated by this, we propose order-expressive masked diffusion model (OeMDM) for a broad class of diffusion generative processes with various generation orders, enabling the interpretation of MDM, ARM, and block diffusion in a single framework. Furthermore, building on OeMDM, we introduce learnable-order masked diffusion model (LoMDM), which jointly learns the generation ordering and diffusion backbone through a single objective from scratch, enabling the diffusion model to generate text in context-dependent ordering. Empirically, we confirm that LoMDM outperforms various discrete diffusion models across multiple language modeling benchmarks.
Abstract:Recent studies have explored using pretrained Vision Foundation Models (VFMs) such as DINO for generative autoencoders, showing strong generative performance. Unfortunately, existing approaches often suffer from limited reconstruction fidelity due to the loss of high-frequency details. In this work, we present the DINO Spherical Autoencoder (DINO-SAE), a framework that bridges semantic representation and pixel-level reconstruction. Our key insight is that semantic information in contrastive representations is primarily encoded in the direction of feature vectors, while forcing strict magnitude matching can hinder the encoder from preserving fine-grained details. To address this, we introduce Hierarchical Convolutional Patch Embedding module that enhances local structure and texture preservation, and Cosine Similarity Alignment objective that enforces semantic consistency while allowing flexible feature magnitudes for detail retention. Furthermore, leveraging the observation that SSL-based foundation model representations intrinsically lie on a hypersphere, we employ Riemannian Flow Matching to train a Diffusion Transformer (DiT) directly on this spherical latent manifold. Experiments on ImageNet-1K demonstrate that our approach achieves state-of-the-art reconstruction quality, reaching 0.37 rFID and 26.2 dB PSNR, while maintaining strong semantic alignment to the pretrained VFM. Notably, our Riemannian Flow Matching-based DiT exhibits efficient convergence, achieving a gFID of 3.47 at 80 epochs.
Abstract:Recent foundational video-to-video diffusion models have achieved impressive results in editing user provided videos by modifying appearance, motion, or camera movement. However, real-world video editing is often an iterative process, where users refine results across multiple rounds of interaction. In this multi-turn setting, current video editors struggle to maintain cross-consistency across sequential edits. In this work, we tackle, for the first time, the problem of cross-consistency in multi-turn video editing and introduce Memory-V2V, a simple, yet effective framework that augments existing video-to-video models with explicit memory. Given an external cache of previously edited videos, Memory-V2V employs accurate retrieval and dynamic tokenization strategies to condition the current editing step on prior results. To further mitigate redundancy and computational overhead, we propose a learnable token compressor within the DiT backbone that compresses redundant conditioning tokens while preserving essential visual cues, achieving an overall speedup of 30%. We validate Memory-V2V on challenging tasks including video novel view synthesis and text-conditioned long video editing. Extensive experiments show that Memory-V2V produces videos that are significantly more cross-consistent with minimal computational overhead, while maintaining or even improving task-specific performance over state-of-the-art baselines. Project page: https://dohunlee1.github.io/MemoryV2V
Abstract:While Large Language Models (LLMs) have shown strong performance on clinical text understanding, they struggle with longitudinal prediction tasks such as dementia prognosis, which require reasoning over complex, non-monotonic symptom trajectories across multiple visits. Standard supervised training lacks explicit annotations for symptom evolution, while direct Reinforcement Learning (RL) is hindered by sparse binary rewards. To address this challenge, we introduce Dementia-R1, an RL-based framework for longitudinal dementia prognosis from unstructured clinical notes. Our approach adopts a Cold-Start RL strategy that pre-trains the model to predict verifiable clinical indices extracted from patient histories, enhancing the capability to reason about disease progression before determining the final clinical status. Extensive experiments demonstrate that Dementia-R1 achieves an F1 score of 77.03% on real-world unstructured clinical datasets. Notably, on the ADNI benchmark, our 7B model rivals GPT-4o, effectively capturing fluctuating cognitive trajectories. Code is available at https://anonymous.4open.science/r/dementiar1-CDB5




Abstract:Blind Image Restoration (BIR) methods have achieved remarkable success but falter when faced with Extreme Blind Image Restoration (EBIR), where inputs suffer from severe, compounded degradations beyond their training scope. Directly learning a mapping from extremely low-quality (ELQ) to high-quality (HQ) images is challenging due to the massive domain gap, often leading to unnatural artifacts and loss of detail. To address this, we propose a novel framework that decomposes the intractable ELQ-to-HQ restoration process. We first learn a projector that maps an ELQ image onto an intermediate, less-degraded LQ manifold. This intermediate image is then restored to HQ using a frozen, off-the-shelf BIR model. Our approach is grounded in information theory; we provide a novel perspective of image restoration as an Information Bottleneck problem and derive a theoretically-driven objective to train our projector. This loss function effectively stabilizes training by balancing a low-quality reconstruction term with a high-quality prior-matching term. Our framework enables Look Forward Once (LFO) for inference-time prompt refinement, and supports plug-and-play strengthening of existing image restoration models without need for finetuning. Extensive experiments under severe degradation regimes provide a thorough analysis of the effectiveness of our work.
Abstract:With diffusion and flow matching models achieving state-of-the-art generating performance, the interest of the community now turned to reducing the inference time without sacrificing sample quality. Consistency Models (CMs), which are trained to be consistent on diffusion or probability flow ordinary differential equation (PF-ODE) trajectories, enable one or two-step flow or diffusion sampling. However, CMs typically require prolonged training with large batch sizes to obtain competitive sample quality. In this paper, we examine the training dynamics of CMs near convergence and discover that CM tangents -- CM output update directions -- are quite oscillatory, in the sense that they move parallel to the data manifold, not towards the manifold. To mitigate oscillatory tangents, we propose a new loss function, called the manifold feature distance (MFD), which provides manifold-aligned tangents that point toward the data manifold. Consequently, our method -- dubbed Align Your Tangent (AYT) -- can accelerate CM training by orders of magnitude and even out-perform the learned perceptual image patch similarity metric (LPIPS). Furthermore, we find that our loss enables training with extremely small batch sizes without compromising sample quality. Code: https://github.com/1202kbs/AYT




Abstract:Phase retrieval in inline holography is a fundamental yet ill-posed inverse problem due to the nonlinear coupling between amplitude and phase in coherent imaging. We present a novel off-the-shelf solution that leverages a diffusion model trained solely on object amplitude to recover both amplitude and phase from diffraction intensities. Using a predictor-corrector sampling framework with separate likelihood gradients for amplitude and phase, our method enables complex field reconstruction without requiring ground-truth phase data for training. We validate the proposed approach through extensive simulations and experiments, demonstrating robust generalization across diverse object shapes, imaging system configurations, and modalities, including lensless setups. Notably, a diffusion prior trained on simple amplitude data (e.g., polystyrene beads) successfully reconstructs complex biological tissue structures, highlighting the method's adaptability. This framework provides a cost-effective, generalizable solution for nonlinear inverse problems in computational imaging, and establishes a foundation for broader coherent imaging applications beyond holography.
Abstract:Video diffusion models have advanced rapidly in the recent years as a result of series of architectural innovations (e.g., diffusion transformers) and use of novel training objectives (e.g., flow matching). In contrast, less attention has been paid to improving the feature representation power of such models. In this work, we show that training video diffusion models can benefit from aligning the intermediate features of the video generator with feature representations of pre-trained vision encoders. We propose a new metric and conduct an in-depth analysis of various vision encoders to evaluate their discriminability and temporal consistency, thereby assessing their suitability for video feature alignment. Based on the analysis, we present Align4Gen which provides a novel multi-feature fusion and alignment method integrated into video diffusion model training. We evaluate Align4Gen both for unconditional and class-conditional video generation tasks and show that it results in improved video generation as quantified by various metrics. Full video results are available on our project page: https://align4gen.github.io/align4gen/




Abstract:Recent inversion-free, flow-based image editing methods such as FlowEdit leverages a pre-trained noise-to-image flow model such as Stable Diffusion 3, enabling text-driven manipulation by solving an ordinary differential equation (ODE). While the lack of exact latent inversion is a core advantage of these methods, it often results in unstable editing trajectories and poor source consistency. To address this limitation, we propose FlowAlign, a novel inversion-free flow-based framework for consistent image editing with principled trajectory control. FlowAlign introduces a flow-matching loss as a regularization mechanism to promote smoother and more stable trajectories during the editing process. Notably, the flow-matching loss is shown to explicitly balance semantic alignment with the edit prompt and structural consistency with the source image along the trajectory. Furthermore, FlowAlign naturally supports reverse editing by simply reversing the ODE trajectory, highlighting the reversible and consistent nature of the transformation. Extensive experiments demonstrate that FlowAlign outperforms existing methods in both source preservation and editing controllability.